This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The Knaster-Tarski theorem says that every monotone function over a complete lattice has a (least) fixpoint. Here we specialize this theorem to the case when the lattice is the powerset lattice ~P A . (Contributed by Mario Carneiro, 11-Jun-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | knatar.1 | ⊢ 𝑋 = ∩ { 𝑧 ∈ 𝒫 𝐴 ∣ ( 𝐹 ‘ 𝑧 ) ⊆ 𝑧 } | |
| Assertion | knatar | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝐹 ‘ 𝐴 ) ⊆ 𝐴 ∧ ∀ 𝑥 ∈ 𝒫 𝐴 ∀ 𝑦 ∈ 𝒫 𝑥 ( 𝐹 ‘ 𝑦 ) ⊆ ( 𝐹 ‘ 𝑥 ) ) → ( 𝑋 ⊆ 𝐴 ∧ ( 𝐹 ‘ 𝑋 ) = 𝑋 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | knatar.1 | ⊢ 𝑋 = ∩ { 𝑧 ∈ 𝒫 𝐴 ∣ ( 𝐹 ‘ 𝑧 ) ⊆ 𝑧 } | |
| 2 | pwidg | ⊢ ( 𝐴 ∈ 𝑉 → 𝐴 ∈ 𝒫 𝐴 ) | |
| 3 | 2 | 3ad2ant1 | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝐹 ‘ 𝐴 ) ⊆ 𝐴 ∧ ∀ 𝑥 ∈ 𝒫 𝐴 ∀ 𝑦 ∈ 𝒫 𝑥 ( 𝐹 ‘ 𝑦 ) ⊆ ( 𝐹 ‘ 𝑥 ) ) → 𝐴 ∈ 𝒫 𝐴 ) |
| 4 | simp2 | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝐹 ‘ 𝐴 ) ⊆ 𝐴 ∧ ∀ 𝑥 ∈ 𝒫 𝐴 ∀ 𝑦 ∈ 𝒫 𝑥 ( 𝐹 ‘ 𝑦 ) ⊆ ( 𝐹 ‘ 𝑥 ) ) → ( 𝐹 ‘ 𝐴 ) ⊆ 𝐴 ) | |
| 5 | fveq2 | ⊢ ( 𝑧 = 𝐴 → ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ 𝐴 ) ) | |
| 6 | id | ⊢ ( 𝑧 = 𝐴 → 𝑧 = 𝐴 ) | |
| 7 | 5 6 | sseq12d | ⊢ ( 𝑧 = 𝐴 → ( ( 𝐹 ‘ 𝑧 ) ⊆ 𝑧 ↔ ( 𝐹 ‘ 𝐴 ) ⊆ 𝐴 ) ) |
| 8 | 7 | intminss | ⊢ ( ( 𝐴 ∈ 𝒫 𝐴 ∧ ( 𝐹 ‘ 𝐴 ) ⊆ 𝐴 ) → ∩ { 𝑧 ∈ 𝒫 𝐴 ∣ ( 𝐹 ‘ 𝑧 ) ⊆ 𝑧 } ⊆ 𝐴 ) |
| 9 | 3 4 8 | syl2anc | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝐹 ‘ 𝐴 ) ⊆ 𝐴 ∧ ∀ 𝑥 ∈ 𝒫 𝐴 ∀ 𝑦 ∈ 𝒫 𝑥 ( 𝐹 ‘ 𝑦 ) ⊆ ( 𝐹 ‘ 𝑥 ) ) → ∩ { 𝑧 ∈ 𝒫 𝐴 ∣ ( 𝐹 ‘ 𝑧 ) ⊆ 𝑧 } ⊆ 𝐴 ) |
| 10 | 1 9 | eqsstrid | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝐹 ‘ 𝐴 ) ⊆ 𝐴 ∧ ∀ 𝑥 ∈ 𝒫 𝐴 ∀ 𝑦 ∈ 𝒫 𝑥 ( 𝐹 ‘ 𝑦 ) ⊆ ( 𝐹 ‘ 𝑥 ) ) → 𝑋 ⊆ 𝐴 ) |
| 11 | fveq2 | ⊢ ( 𝑦 = 𝑋 → ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑋 ) ) | |
| 12 | 11 | sseq1d | ⊢ ( 𝑦 = 𝑋 → ( ( 𝐹 ‘ 𝑦 ) ⊆ ( 𝐹 ‘ 𝑤 ) ↔ ( 𝐹 ‘ 𝑋 ) ⊆ ( 𝐹 ‘ 𝑤 ) ) ) |
| 13 | pweq | ⊢ ( 𝑥 = 𝑤 → 𝒫 𝑥 = 𝒫 𝑤 ) | |
| 14 | fveq2 | ⊢ ( 𝑥 = 𝑤 → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑤 ) ) | |
| 15 | 14 | sseq2d | ⊢ ( 𝑥 = 𝑤 → ( ( 𝐹 ‘ 𝑦 ) ⊆ ( 𝐹 ‘ 𝑥 ) ↔ ( 𝐹 ‘ 𝑦 ) ⊆ ( 𝐹 ‘ 𝑤 ) ) ) |
| 16 | 13 15 | raleqbidv | ⊢ ( 𝑥 = 𝑤 → ( ∀ 𝑦 ∈ 𝒫 𝑥 ( 𝐹 ‘ 𝑦 ) ⊆ ( 𝐹 ‘ 𝑥 ) ↔ ∀ 𝑦 ∈ 𝒫 𝑤 ( 𝐹 ‘ 𝑦 ) ⊆ ( 𝐹 ‘ 𝑤 ) ) ) |
| 17 | simpl3 | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ ( 𝐹 ‘ 𝐴 ) ⊆ 𝐴 ∧ ∀ 𝑥 ∈ 𝒫 𝐴 ∀ 𝑦 ∈ 𝒫 𝑥 ( 𝐹 ‘ 𝑦 ) ⊆ ( 𝐹 ‘ 𝑥 ) ) ∧ ( 𝑤 ∈ 𝒫 𝐴 ∧ ( 𝐹 ‘ 𝑤 ) ⊆ 𝑤 ) ) → ∀ 𝑥 ∈ 𝒫 𝐴 ∀ 𝑦 ∈ 𝒫 𝑥 ( 𝐹 ‘ 𝑦 ) ⊆ ( 𝐹 ‘ 𝑥 ) ) | |
| 18 | simprl | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ ( 𝐹 ‘ 𝐴 ) ⊆ 𝐴 ∧ ∀ 𝑥 ∈ 𝒫 𝐴 ∀ 𝑦 ∈ 𝒫 𝑥 ( 𝐹 ‘ 𝑦 ) ⊆ ( 𝐹 ‘ 𝑥 ) ) ∧ ( 𝑤 ∈ 𝒫 𝐴 ∧ ( 𝐹 ‘ 𝑤 ) ⊆ 𝑤 ) ) → 𝑤 ∈ 𝒫 𝐴 ) | |
| 19 | 16 17 18 | rspcdva | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ ( 𝐹 ‘ 𝐴 ) ⊆ 𝐴 ∧ ∀ 𝑥 ∈ 𝒫 𝐴 ∀ 𝑦 ∈ 𝒫 𝑥 ( 𝐹 ‘ 𝑦 ) ⊆ ( 𝐹 ‘ 𝑥 ) ) ∧ ( 𝑤 ∈ 𝒫 𝐴 ∧ ( 𝐹 ‘ 𝑤 ) ⊆ 𝑤 ) ) → ∀ 𝑦 ∈ 𝒫 𝑤 ( 𝐹 ‘ 𝑦 ) ⊆ ( 𝐹 ‘ 𝑤 ) ) |
| 20 | fveq2 | ⊢ ( 𝑧 = 𝑤 → ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ 𝑤 ) ) | |
| 21 | id | ⊢ ( 𝑧 = 𝑤 → 𝑧 = 𝑤 ) | |
| 22 | 20 21 | sseq12d | ⊢ ( 𝑧 = 𝑤 → ( ( 𝐹 ‘ 𝑧 ) ⊆ 𝑧 ↔ ( 𝐹 ‘ 𝑤 ) ⊆ 𝑤 ) ) |
| 23 | 22 | intminss | ⊢ ( ( 𝑤 ∈ 𝒫 𝐴 ∧ ( 𝐹 ‘ 𝑤 ) ⊆ 𝑤 ) → ∩ { 𝑧 ∈ 𝒫 𝐴 ∣ ( 𝐹 ‘ 𝑧 ) ⊆ 𝑧 } ⊆ 𝑤 ) |
| 24 | 23 | adantl | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ ( 𝐹 ‘ 𝐴 ) ⊆ 𝐴 ∧ ∀ 𝑥 ∈ 𝒫 𝐴 ∀ 𝑦 ∈ 𝒫 𝑥 ( 𝐹 ‘ 𝑦 ) ⊆ ( 𝐹 ‘ 𝑥 ) ) ∧ ( 𝑤 ∈ 𝒫 𝐴 ∧ ( 𝐹 ‘ 𝑤 ) ⊆ 𝑤 ) ) → ∩ { 𝑧 ∈ 𝒫 𝐴 ∣ ( 𝐹 ‘ 𝑧 ) ⊆ 𝑧 } ⊆ 𝑤 ) |
| 25 | 1 24 | eqsstrid | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ ( 𝐹 ‘ 𝐴 ) ⊆ 𝐴 ∧ ∀ 𝑥 ∈ 𝒫 𝐴 ∀ 𝑦 ∈ 𝒫 𝑥 ( 𝐹 ‘ 𝑦 ) ⊆ ( 𝐹 ‘ 𝑥 ) ) ∧ ( 𝑤 ∈ 𝒫 𝐴 ∧ ( 𝐹 ‘ 𝑤 ) ⊆ 𝑤 ) ) → 𝑋 ⊆ 𝑤 ) |
| 26 | vex | ⊢ 𝑤 ∈ V | |
| 27 | 26 | elpw2 | ⊢ ( 𝑋 ∈ 𝒫 𝑤 ↔ 𝑋 ⊆ 𝑤 ) |
| 28 | 25 27 | sylibr | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ ( 𝐹 ‘ 𝐴 ) ⊆ 𝐴 ∧ ∀ 𝑥 ∈ 𝒫 𝐴 ∀ 𝑦 ∈ 𝒫 𝑥 ( 𝐹 ‘ 𝑦 ) ⊆ ( 𝐹 ‘ 𝑥 ) ) ∧ ( 𝑤 ∈ 𝒫 𝐴 ∧ ( 𝐹 ‘ 𝑤 ) ⊆ 𝑤 ) ) → 𝑋 ∈ 𝒫 𝑤 ) |
| 29 | 12 19 28 | rspcdva | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ ( 𝐹 ‘ 𝐴 ) ⊆ 𝐴 ∧ ∀ 𝑥 ∈ 𝒫 𝐴 ∀ 𝑦 ∈ 𝒫 𝑥 ( 𝐹 ‘ 𝑦 ) ⊆ ( 𝐹 ‘ 𝑥 ) ) ∧ ( 𝑤 ∈ 𝒫 𝐴 ∧ ( 𝐹 ‘ 𝑤 ) ⊆ 𝑤 ) ) → ( 𝐹 ‘ 𝑋 ) ⊆ ( 𝐹 ‘ 𝑤 ) ) |
| 30 | simprr | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ ( 𝐹 ‘ 𝐴 ) ⊆ 𝐴 ∧ ∀ 𝑥 ∈ 𝒫 𝐴 ∀ 𝑦 ∈ 𝒫 𝑥 ( 𝐹 ‘ 𝑦 ) ⊆ ( 𝐹 ‘ 𝑥 ) ) ∧ ( 𝑤 ∈ 𝒫 𝐴 ∧ ( 𝐹 ‘ 𝑤 ) ⊆ 𝑤 ) ) → ( 𝐹 ‘ 𝑤 ) ⊆ 𝑤 ) | |
| 31 | 29 30 | sstrd | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ ( 𝐹 ‘ 𝐴 ) ⊆ 𝐴 ∧ ∀ 𝑥 ∈ 𝒫 𝐴 ∀ 𝑦 ∈ 𝒫 𝑥 ( 𝐹 ‘ 𝑦 ) ⊆ ( 𝐹 ‘ 𝑥 ) ) ∧ ( 𝑤 ∈ 𝒫 𝐴 ∧ ( 𝐹 ‘ 𝑤 ) ⊆ 𝑤 ) ) → ( 𝐹 ‘ 𝑋 ) ⊆ 𝑤 ) |
| 32 | 31 | expr | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ ( 𝐹 ‘ 𝐴 ) ⊆ 𝐴 ∧ ∀ 𝑥 ∈ 𝒫 𝐴 ∀ 𝑦 ∈ 𝒫 𝑥 ( 𝐹 ‘ 𝑦 ) ⊆ ( 𝐹 ‘ 𝑥 ) ) ∧ 𝑤 ∈ 𝒫 𝐴 ) → ( ( 𝐹 ‘ 𝑤 ) ⊆ 𝑤 → ( 𝐹 ‘ 𝑋 ) ⊆ 𝑤 ) ) |
| 33 | 32 | ralrimiva | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝐹 ‘ 𝐴 ) ⊆ 𝐴 ∧ ∀ 𝑥 ∈ 𝒫 𝐴 ∀ 𝑦 ∈ 𝒫 𝑥 ( 𝐹 ‘ 𝑦 ) ⊆ ( 𝐹 ‘ 𝑥 ) ) → ∀ 𝑤 ∈ 𝒫 𝐴 ( ( 𝐹 ‘ 𝑤 ) ⊆ 𝑤 → ( 𝐹 ‘ 𝑋 ) ⊆ 𝑤 ) ) |
| 34 | ssintrab | ⊢ ( ( 𝐹 ‘ 𝑋 ) ⊆ ∩ { 𝑤 ∈ 𝒫 𝐴 ∣ ( 𝐹 ‘ 𝑤 ) ⊆ 𝑤 } ↔ ∀ 𝑤 ∈ 𝒫 𝐴 ( ( 𝐹 ‘ 𝑤 ) ⊆ 𝑤 → ( 𝐹 ‘ 𝑋 ) ⊆ 𝑤 ) ) | |
| 35 | 33 34 | sylibr | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝐹 ‘ 𝐴 ) ⊆ 𝐴 ∧ ∀ 𝑥 ∈ 𝒫 𝐴 ∀ 𝑦 ∈ 𝒫 𝑥 ( 𝐹 ‘ 𝑦 ) ⊆ ( 𝐹 ‘ 𝑥 ) ) → ( 𝐹 ‘ 𝑋 ) ⊆ ∩ { 𝑤 ∈ 𝒫 𝐴 ∣ ( 𝐹 ‘ 𝑤 ) ⊆ 𝑤 } ) |
| 36 | 22 | cbvrabv | ⊢ { 𝑧 ∈ 𝒫 𝐴 ∣ ( 𝐹 ‘ 𝑧 ) ⊆ 𝑧 } = { 𝑤 ∈ 𝒫 𝐴 ∣ ( 𝐹 ‘ 𝑤 ) ⊆ 𝑤 } |
| 37 | 36 | inteqi | ⊢ ∩ { 𝑧 ∈ 𝒫 𝐴 ∣ ( 𝐹 ‘ 𝑧 ) ⊆ 𝑧 } = ∩ { 𝑤 ∈ 𝒫 𝐴 ∣ ( 𝐹 ‘ 𝑤 ) ⊆ 𝑤 } |
| 38 | 1 37 | eqtri | ⊢ 𝑋 = ∩ { 𝑤 ∈ 𝒫 𝐴 ∣ ( 𝐹 ‘ 𝑤 ) ⊆ 𝑤 } |
| 39 | 35 38 | sseqtrrdi | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝐹 ‘ 𝐴 ) ⊆ 𝐴 ∧ ∀ 𝑥 ∈ 𝒫 𝐴 ∀ 𝑦 ∈ 𝒫 𝑥 ( 𝐹 ‘ 𝑦 ) ⊆ ( 𝐹 ‘ 𝑥 ) ) → ( 𝐹 ‘ 𝑋 ) ⊆ 𝑋 ) |
| 40 | 11 | sseq1d | ⊢ ( 𝑦 = 𝑋 → ( ( 𝐹 ‘ 𝑦 ) ⊆ ( 𝐹 ‘ 𝐴 ) ↔ ( 𝐹 ‘ 𝑋 ) ⊆ ( 𝐹 ‘ 𝐴 ) ) ) |
| 41 | pweq | ⊢ ( 𝑥 = 𝐴 → 𝒫 𝑥 = 𝒫 𝐴 ) | |
| 42 | fveq2 | ⊢ ( 𝑥 = 𝐴 → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝐴 ) ) | |
| 43 | 42 | sseq2d | ⊢ ( 𝑥 = 𝐴 → ( ( 𝐹 ‘ 𝑦 ) ⊆ ( 𝐹 ‘ 𝑥 ) ↔ ( 𝐹 ‘ 𝑦 ) ⊆ ( 𝐹 ‘ 𝐴 ) ) ) |
| 44 | 41 43 | raleqbidv | ⊢ ( 𝑥 = 𝐴 → ( ∀ 𝑦 ∈ 𝒫 𝑥 ( 𝐹 ‘ 𝑦 ) ⊆ ( 𝐹 ‘ 𝑥 ) ↔ ∀ 𝑦 ∈ 𝒫 𝐴 ( 𝐹 ‘ 𝑦 ) ⊆ ( 𝐹 ‘ 𝐴 ) ) ) |
| 45 | simp3 | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝐹 ‘ 𝐴 ) ⊆ 𝐴 ∧ ∀ 𝑥 ∈ 𝒫 𝐴 ∀ 𝑦 ∈ 𝒫 𝑥 ( 𝐹 ‘ 𝑦 ) ⊆ ( 𝐹 ‘ 𝑥 ) ) → ∀ 𝑥 ∈ 𝒫 𝐴 ∀ 𝑦 ∈ 𝒫 𝑥 ( 𝐹 ‘ 𝑦 ) ⊆ ( 𝐹 ‘ 𝑥 ) ) | |
| 46 | 44 45 3 | rspcdva | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝐹 ‘ 𝐴 ) ⊆ 𝐴 ∧ ∀ 𝑥 ∈ 𝒫 𝐴 ∀ 𝑦 ∈ 𝒫 𝑥 ( 𝐹 ‘ 𝑦 ) ⊆ ( 𝐹 ‘ 𝑥 ) ) → ∀ 𝑦 ∈ 𝒫 𝐴 ( 𝐹 ‘ 𝑦 ) ⊆ ( 𝐹 ‘ 𝐴 ) ) |
| 47 | 3 10 | sselpwd | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝐹 ‘ 𝐴 ) ⊆ 𝐴 ∧ ∀ 𝑥 ∈ 𝒫 𝐴 ∀ 𝑦 ∈ 𝒫 𝑥 ( 𝐹 ‘ 𝑦 ) ⊆ ( 𝐹 ‘ 𝑥 ) ) → 𝑋 ∈ 𝒫 𝐴 ) |
| 48 | 40 46 47 | rspcdva | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝐹 ‘ 𝐴 ) ⊆ 𝐴 ∧ ∀ 𝑥 ∈ 𝒫 𝐴 ∀ 𝑦 ∈ 𝒫 𝑥 ( 𝐹 ‘ 𝑦 ) ⊆ ( 𝐹 ‘ 𝑥 ) ) → ( 𝐹 ‘ 𝑋 ) ⊆ ( 𝐹 ‘ 𝐴 ) ) |
| 49 | 48 4 | sstrd | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝐹 ‘ 𝐴 ) ⊆ 𝐴 ∧ ∀ 𝑥 ∈ 𝒫 𝐴 ∀ 𝑦 ∈ 𝒫 𝑥 ( 𝐹 ‘ 𝑦 ) ⊆ ( 𝐹 ‘ 𝑥 ) ) → ( 𝐹 ‘ 𝑋 ) ⊆ 𝐴 ) |
| 50 | fvex | ⊢ ( 𝐹 ‘ 𝑋 ) ∈ V | |
| 51 | 50 | elpw | ⊢ ( ( 𝐹 ‘ 𝑋 ) ∈ 𝒫 𝐴 ↔ ( 𝐹 ‘ 𝑋 ) ⊆ 𝐴 ) |
| 52 | 49 51 | sylibr | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝐹 ‘ 𝐴 ) ⊆ 𝐴 ∧ ∀ 𝑥 ∈ 𝒫 𝐴 ∀ 𝑦 ∈ 𝒫 𝑥 ( 𝐹 ‘ 𝑦 ) ⊆ ( 𝐹 ‘ 𝑥 ) ) → ( 𝐹 ‘ 𝑋 ) ∈ 𝒫 𝐴 ) |
| 53 | fveq2 | ⊢ ( 𝑦 = ( 𝐹 ‘ 𝑋 ) → ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ ( 𝐹 ‘ 𝑋 ) ) ) | |
| 54 | 53 | sseq1d | ⊢ ( 𝑦 = ( 𝐹 ‘ 𝑋 ) → ( ( 𝐹 ‘ 𝑦 ) ⊆ ( 𝐹 ‘ 𝑋 ) ↔ ( 𝐹 ‘ ( 𝐹 ‘ 𝑋 ) ) ⊆ ( 𝐹 ‘ 𝑋 ) ) ) |
| 55 | pweq | ⊢ ( 𝑥 = 𝑋 → 𝒫 𝑥 = 𝒫 𝑋 ) | |
| 56 | fveq2 | ⊢ ( 𝑥 = 𝑋 → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑋 ) ) | |
| 57 | 56 | sseq2d | ⊢ ( 𝑥 = 𝑋 → ( ( 𝐹 ‘ 𝑦 ) ⊆ ( 𝐹 ‘ 𝑥 ) ↔ ( 𝐹 ‘ 𝑦 ) ⊆ ( 𝐹 ‘ 𝑋 ) ) ) |
| 58 | 55 57 | raleqbidv | ⊢ ( 𝑥 = 𝑋 → ( ∀ 𝑦 ∈ 𝒫 𝑥 ( 𝐹 ‘ 𝑦 ) ⊆ ( 𝐹 ‘ 𝑥 ) ↔ ∀ 𝑦 ∈ 𝒫 𝑋 ( 𝐹 ‘ 𝑦 ) ⊆ ( 𝐹 ‘ 𝑋 ) ) ) |
| 59 | 58 45 47 | rspcdva | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝐹 ‘ 𝐴 ) ⊆ 𝐴 ∧ ∀ 𝑥 ∈ 𝒫 𝐴 ∀ 𝑦 ∈ 𝒫 𝑥 ( 𝐹 ‘ 𝑦 ) ⊆ ( 𝐹 ‘ 𝑥 ) ) → ∀ 𝑦 ∈ 𝒫 𝑋 ( 𝐹 ‘ 𝑦 ) ⊆ ( 𝐹 ‘ 𝑋 ) ) |
| 60 | 50 | elpw | ⊢ ( ( 𝐹 ‘ 𝑋 ) ∈ 𝒫 𝑋 ↔ ( 𝐹 ‘ 𝑋 ) ⊆ 𝑋 ) |
| 61 | 39 60 | sylibr | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝐹 ‘ 𝐴 ) ⊆ 𝐴 ∧ ∀ 𝑥 ∈ 𝒫 𝐴 ∀ 𝑦 ∈ 𝒫 𝑥 ( 𝐹 ‘ 𝑦 ) ⊆ ( 𝐹 ‘ 𝑥 ) ) → ( 𝐹 ‘ 𝑋 ) ∈ 𝒫 𝑋 ) |
| 62 | 54 59 61 | rspcdva | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝐹 ‘ 𝐴 ) ⊆ 𝐴 ∧ ∀ 𝑥 ∈ 𝒫 𝐴 ∀ 𝑦 ∈ 𝒫 𝑥 ( 𝐹 ‘ 𝑦 ) ⊆ ( 𝐹 ‘ 𝑥 ) ) → ( 𝐹 ‘ ( 𝐹 ‘ 𝑋 ) ) ⊆ ( 𝐹 ‘ 𝑋 ) ) |
| 63 | fveq2 | ⊢ ( 𝑤 = ( 𝐹 ‘ 𝑋 ) → ( 𝐹 ‘ 𝑤 ) = ( 𝐹 ‘ ( 𝐹 ‘ 𝑋 ) ) ) | |
| 64 | id | ⊢ ( 𝑤 = ( 𝐹 ‘ 𝑋 ) → 𝑤 = ( 𝐹 ‘ 𝑋 ) ) | |
| 65 | 63 64 | sseq12d | ⊢ ( 𝑤 = ( 𝐹 ‘ 𝑋 ) → ( ( 𝐹 ‘ 𝑤 ) ⊆ 𝑤 ↔ ( 𝐹 ‘ ( 𝐹 ‘ 𝑋 ) ) ⊆ ( 𝐹 ‘ 𝑋 ) ) ) |
| 66 | 65 | intminss | ⊢ ( ( ( 𝐹 ‘ 𝑋 ) ∈ 𝒫 𝐴 ∧ ( 𝐹 ‘ ( 𝐹 ‘ 𝑋 ) ) ⊆ ( 𝐹 ‘ 𝑋 ) ) → ∩ { 𝑤 ∈ 𝒫 𝐴 ∣ ( 𝐹 ‘ 𝑤 ) ⊆ 𝑤 } ⊆ ( 𝐹 ‘ 𝑋 ) ) |
| 67 | 52 62 66 | syl2anc | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝐹 ‘ 𝐴 ) ⊆ 𝐴 ∧ ∀ 𝑥 ∈ 𝒫 𝐴 ∀ 𝑦 ∈ 𝒫 𝑥 ( 𝐹 ‘ 𝑦 ) ⊆ ( 𝐹 ‘ 𝑥 ) ) → ∩ { 𝑤 ∈ 𝒫 𝐴 ∣ ( 𝐹 ‘ 𝑤 ) ⊆ 𝑤 } ⊆ ( 𝐹 ‘ 𝑋 ) ) |
| 68 | 38 67 | eqsstrid | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝐹 ‘ 𝐴 ) ⊆ 𝐴 ∧ ∀ 𝑥 ∈ 𝒫 𝐴 ∀ 𝑦 ∈ 𝒫 𝑥 ( 𝐹 ‘ 𝑦 ) ⊆ ( 𝐹 ‘ 𝑥 ) ) → 𝑋 ⊆ ( 𝐹 ‘ 𝑋 ) ) |
| 69 | 39 68 | eqssd | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝐹 ‘ 𝐴 ) ⊆ 𝐴 ∧ ∀ 𝑥 ∈ 𝒫 𝐴 ∀ 𝑦 ∈ 𝒫 𝑥 ( 𝐹 ‘ 𝑦 ) ⊆ ( 𝐹 ‘ 𝑥 ) ) → ( 𝐹 ‘ 𝑋 ) = 𝑋 ) |
| 70 | 10 69 | jca | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝐹 ‘ 𝐴 ) ⊆ 𝐴 ∧ ∀ 𝑥 ∈ 𝒫 𝐴 ∀ 𝑦 ∈ 𝒫 𝑥 ( 𝐹 ‘ 𝑦 ) ⊆ ( 𝐹 ‘ 𝑥 ) ) → ( 𝑋 ⊆ 𝐴 ∧ ( 𝐹 ‘ 𝑋 ) = 𝑋 ) ) |