This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Weak dominance agrees with normal for finite left sets. (Contributed by Stefan O'Rear, 28-Feb-2015) (Revised by Mario Carneiro, 5-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | wdomfil | ⊢ ( 𝑋 ∈ Fin → ( 𝑋 ≼* 𝑌 ↔ 𝑋 ≼ 𝑌 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relwdom | ⊢ Rel ≼* | |
| 2 | 1 | brrelex2i | ⊢ ( 𝑋 ≼* 𝑌 → 𝑌 ∈ V ) |
| 3 | 0domg | ⊢ ( 𝑌 ∈ V → ∅ ≼ 𝑌 ) | |
| 4 | 2 3 | syl | ⊢ ( 𝑋 ≼* 𝑌 → ∅ ≼ 𝑌 ) |
| 5 | breq1 | ⊢ ( 𝑋 = ∅ → ( 𝑋 ≼ 𝑌 ↔ ∅ ≼ 𝑌 ) ) | |
| 6 | 4 5 | imbitrrid | ⊢ ( 𝑋 = ∅ → ( 𝑋 ≼* 𝑌 → 𝑋 ≼ 𝑌 ) ) |
| 7 | 6 | adantl | ⊢ ( ( 𝑋 ∈ Fin ∧ 𝑋 = ∅ ) → ( 𝑋 ≼* 𝑌 → 𝑋 ≼ 𝑌 ) ) |
| 8 | brwdomn0 | ⊢ ( 𝑋 ≠ ∅ → ( 𝑋 ≼* 𝑌 ↔ ∃ 𝑥 𝑥 : 𝑌 –onto→ 𝑋 ) ) | |
| 9 | 8 | adantl | ⊢ ( ( 𝑋 ∈ Fin ∧ 𝑋 ≠ ∅ ) → ( 𝑋 ≼* 𝑌 ↔ ∃ 𝑥 𝑥 : 𝑌 –onto→ 𝑋 ) ) |
| 10 | vex | ⊢ 𝑥 ∈ V | |
| 11 | fof | ⊢ ( 𝑥 : 𝑌 –onto→ 𝑋 → 𝑥 : 𝑌 ⟶ 𝑋 ) | |
| 12 | dmfex | ⊢ ( ( 𝑥 ∈ V ∧ 𝑥 : 𝑌 ⟶ 𝑋 ) → 𝑌 ∈ V ) | |
| 13 | 10 11 12 | sylancr | ⊢ ( 𝑥 : 𝑌 –onto→ 𝑋 → 𝑌 ∈ V ) |
| 14 | 13 | adantl | ⊢ ( ( 𝑋 ∈ Fin ∧ 𝑥 : 𝑌 –onto→ 𝑋 ) → 𝑌 ∈ V ) |
| 15 | simpl | ⊢ ( ( 𝑋 ∈ Fin ∧ 𝑥 : 𝑌 –onto→ 𝑋 ) → 𝑋 ∈ Fin ) | |
| 16 | simpr | ⊢ ( ( 𝑋 ∈ Fin ∧ 𝑥 : 𝑌 –onto→ 𝑋 ) → 𝑥 : 𝑌 –onto→ 𝑋 ) | |
| 17 | fodomfi2 | ⊢ ( ( 𝑌 ∈ V ∧ 𝑋 ∈ Fin ∧ 𝑥 : 𝑌 –onto→ 𝑋 ) → 𝑋 ≼ 𝑌 ) | |
| 18 | 14 15 16 17 | syl3anc | ⊢ ( ( 𝑋 ∈ Fin ∧ 𝑥 : 𝑌 –onto→ 𝑋 ) → 𝑋 ≼ 𝑌 ) |
| 19 | 18 | ex | ⊢ ( 𝑋 ∈ Fin → ( 𝑥 : 𝑌 –onto→ 𝑋 → 𝑋 ≼ 𝑌 ) ) |
| 20 | 19 | adantr | ⊢ ( ( 𝑋 ∈ Fin ∧ 𝑋 ≠ ∅ ) → ( 𝑥 : 𝑌 –onto→ 𝑋 → 𝑋 ≼ 𝑌 ) ) |
| 21 | 20 | exlimdv | ⊢ ( ( 𝑋 ∈ Fin ∧ 𝑋 ≠ ∅ ) → ( ∃ 𝑥 𝑥 : 𝑌 –onto→ 𝑋 → 𝑋 ≼ 𝑌 ) ) |
| 22 | 9 21 | sylbid | ⊢ ( ( 𝑋 ∈ Fin ∧ 𝑋 ≠ ∅ ) → ( 𝑋 ≼* 𝑌 → 𝑋 ≼ 𝑌 ) ) |
| 23 | 7 22 | pm2.61dane | ⊢ ( 𝑋 ∈ Fin → ( 𝑋 ≼* 𝑌 → 𝑋 ≼ 𝑌 ) ) |
| 24 | domwdom | ⊢ ( 𝑋 ≼ 𝑌 → 𝑋 ≼* 𝑌 ) | |
| 25 | 23 24 | impbid1 | ⊢ ( 𝑋 ∈ Fin → ( 𝑋 ≼* 𝑌 ↔ 𝑋 ≼ 𝑌 ) ) |