This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Onto functions define dominance when a finite number of choices need to be made. (Contributed by Stefan O'Rear, 28-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fodomfi2 | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ Fin ∧ 𝐹 : 𝐴 –onto→ 𝐵 ) → 𝐵 ≼ 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fofn | ⊢ ( 𝐹 : 𝐴 –onto→ 𝐵 → 𝐹 Fn 𝐴 ) | |
| 2 | 1 | 3ad2ant3 | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ Fin ∧ 𝐹 : 𝐴 –onto→ 𝐵 ) → 𝐹 Fn 𝐴 ) |
| 3 | forn | ⊢ ( 𝐹 : 𝐴 –onto→ 𝐵 → ran 𝐹 = 𝐵 ) | |
| 4 | eqimss2 | ⊢ ( ran 𝐹 = 𝐵 → 𝐵 ⊆ ran 𝐹 ) | |
| 5 | 3 4 | syl | ⊢ ( 𝐹 : 𝐴 –onto→ 𝐵 → 𝐵 ⊆ ran 𝐹 ) |
| 6 | 5 | 3ad2ant3 | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ Fin ∧ 𝐹 : 𝐴 –onto→ 𝐵 ) → 𝐵 ⊆ ran 𝐹 ) |
| 7 | simp2 | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ Fin ∧ 𝐹 : 𝐴 –onto→ 𝐵 ) → 𝐵 ∈ Fin ) | |
| 8 | fipreima | ⊢ ( ( 𝐹 Fn 𝐴 ∧ 𝐵 ⊆ ran 𝐹 ∧ 𝐵 ∈ Fin ) → ∃ 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ( 𝐹 “ 𝑥 ) = 𝐵 ) | |
| 9 | 2 6 7 8 | syl3anc | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ Fin ∧ 𝐹 : 𝐴 –onto→ 𝐵 ) → ∃ 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ( 𝐹 “ 𝑥 ) = 𝐵 ) |
| 10 | elinel2 | ⊢ ( 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) → 𝑥 ∈ Fin ) | |
| 11 | 10 | adantl | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ Fin ∧ 𝐹 : 𝐴 –onto→ 𝐵 ) ∧ 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ) → 𝑥 ∈ Fin ) |
| 12 | finnum | ⊢ ( 𝑥 ∈ Fin → 𝑥 ∈ dom card ) | |
| 13 | 11 12 | syl | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ Fin ∧ 𝐹 : 𝐴 –onto→ 𝐵 ) ∧ 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ) → 𝑥 ∈ dom card ) |
| 14 | simpl3 | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ Fin ∧ 𝐹 : 𝐴 –onto→ 𝐵 ) ∧ 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ) → 𝐹 : 𝐴 –onto→ 𝐵 ) | |
| 15 | fofun | ⊢ ( 𝐹 : 𝐴 –onto→ 𝐵 → Fun 𝐹 ) | |
| 16 | 14 15 | syl | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ Fin ∧ 𝐹 : 𝐴 –onto→ 𝐵 ) ∧ 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ) → Fun 𝐹 ) |
| 17 | elinel1 | ⊢ ( 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) → 𝑥 ∈ 𝒫 𝐴 ) | |
| 18 | 17 | elpwid | ⊢ ( 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) → 𝑥 ⊆ 𝐴 ) |
| 19 | 18 | adantl | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ Fin ∧ 𝐹 : 𝐴 –onto→ 𝐵 ) ∧ 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ) → 𝑥 ⊆ 𝐴 ) |
| 20 | fof | ⊢ ( 𝐹 : 𝐴 –onto→ 𝐵 → 𝐹 : 𝐴 ⟶ 𝐵 ) | |
| 21 | fdm | ⊢ ( 𝐹 : 𝐴 ⟶ 𝐵 → dom 𝐹 = 𝐴 ) | |
| 22 | 14 20 21 | 3syl | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ Fin ∧ 𝐹 : 𝐴 –onto→ 𝐵 ) ∧ 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ) → dom 𝐹 = 𝐴 ) |
| 23 | 19 22 | sseqtrrd | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ Fin ∧ 𝐹 : 𝐴 –onto→ 𝐵 ) ∧ 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ) → 𝑥 ⊆ dom 𝐹 ) |
| 24 | fores | ⊢ ( ( Fun 𝐹 ∧ 𝑥 ⊆ dom 𝐹 ) → ( 𝐹 ↾ 𝑥 ) : 𝑥 –onto→ ( 𝐹 “ 𝑥 ) ) | |
| 25 | 16 23 24 | syl2anc | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ Fin ∧ 𝐹 : 𝐴 –onto→ 𝐵 ) ∧ 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ) → ( 𝐹 ↾ 𝑥 ) : 𝑥 –onto→ ( 𝐹 “ 𝑥 ) ) |
| 26 | fodomnum | ⊢ ( 𝑥 ∈ dom card → ( ( 𝐹 ↾ 𝑥 ) : 𝑥 –onto→ ( 𝐹 “ 𝑥 ) → ( 𝐹 “ 𝑥 ) ≼ 𝑥 ) ) | |
| 27 | 13 25 26 | sylc | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ Fin ∧ 𝐹 : 𝐴 –onto→ 𝐵 ) ∧ 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ) → ( 𝐹 “ 𝑥 ) ≼ 𝑥 ) |
| 28 | simpl1 | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ Fin ∧ 𝐹 : 𝐴 –onto→ 𝐵 ) ∧ 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ) → 𝐴 ∈ 𝑉 ) | |
| 29 | ssdomg | ⊢ ( 𝐴 ∈ 𝑉 → ( 𝑥 ⊆ 𝐴 → 𝑥 ≼ 𝐴 ) ) | |
| 30 | 28 19 29 | sylc | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ Fin ∧ 𝐹 : 𝐴 –onto→ 𝐵 ) ∧ 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ) → 𝑥 ≼ 𝐴 ) |
| 31 | domtr | ⊢ ( ( ( 𝐹 “ 𝑥 ) ≼ 𝑥 ∧ 𝑥 ≼ 𝐴 ) → ( 𝐹 “ 𝑥 ) ≼ 𝐴 ) | |
| 32 | 27 30 31 | syl2anc | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ Fin ∧ 𝐹 : 𝐴 –onto→ 𝐵 ) ∧ 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ) → ( 𝐹 “ 𝑥 ) ≼ 𝐴 ) |
| 33 | breq1 | ⊢ ( ( 𝐹 “ 𝑥 ) = 𝐵 → ( ( 𝐹 “ 𝑥 ) ≼ 𝐴 ↔ 𝐵 ≼ 𝐴 ) ) | |
| 34 | 32 33 | syl5ibcom | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ Fin ∧ 𝐹 : 𝐴 –onto→ 𝐵 ) ∧ 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ) → ( ( 𝐹 “ 𝑥 ) = 𝐵 → 𝐵 ≼ 𝐴 ) ) |
| 35 | 34 | rexlimdva | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ Fin ∧ 𝐹 : 𝐴 –onto→ 𝐵 ) → ( ∃ 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ( 𝐹 “ 𝑥 ) = 𝐵 → 𝐵 ≼ 𝐴 ) ) |
| 36 | 9 35 | mpd | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ Fin ∧ 𝐹 : 𝐴 –onto→ 𝐵 ) → 𝐵 ≼ 𝐴 ) |