This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Weak dominance agrees with normal for finite left sets. (Contributed by Stefan O'Rear, 28-Feb-2015) (Revised by Mario Carneiro, 5-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | wdomfil | |- ( X e. Fin -> ( X ~<_* Y <-> X ~<_ Y ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relwdom | |- Rel ~<_* |
|
| 2 | 1 | brrelex2i | |- ( X ~<_* Y -> Y e. _V ) |
| 3 | 0domg | |- ( Y e. _V -> (/) ~<_ Y ) |
|
| 4 | 2 3 | syl | |- ( X ~<_* Y -> (/) ~<_ Y ) |
| 5 | breq1 | |- ( X = (/) -> ( X ~<_ Y <-> (/) ~<_ Y ) ) |
|
| 6 | 4 5 | imbitrrid | |- ( X = (/) -> ( X ~<_* Y -> X ~<_ Y ) ) |
| 7 | 6 | adantl | |- ( ( X e. Fin /\ X = (/) ) -> ( X ~<_* Y -> X ~<_ Y ) ) |
| 8 | brwdomn0 | |- ( X =/= (/) -> ( X ~<_* Y <-> E. x x : Y -onto-> X ) ) |
|
| 9 | 8 | adantl | |- ( ( X e. Fin /\ X =/= (/) ) -> ( X ~<_* Y <-> E. x x : Y -onto-> X ) ) |
| 10 | vex | |- x e. _V |
|
| 11 | fof | |- ( x : Y -onto-> X -> x : Y --> X ) |
|
| 12 | dmfex | |- ( ( x e. _V /\ x : Y --> X ) -> Y e. _V ) |
|
| 13 | 10 11 12 | sylancr | |- ( x : Y -onto-> X -> Y e. _V ) |
| 14 | 13 | adantl | |- ( ( X e. Fin /\ x : Y -onto-> X ) -> Y e. _V ) |
| 15 | simpl | |- ( ( X e. Fin /\ x : Y -onto-> X ) -> X e. Fin ) |
|
| 16 | simpr | |- ( ( X e. Fin /\ x : Y -onto-> X ) -> x : Y -onto-> X ) |
|
| 17 | fodomfi2 | |- ( ( Y e. _V /\ X e. Fin /\ x : Y -onto-> X ) -> X ~<_ Y ) |
|
| 18 | 14 15 16 17 | syl3anc | |- ( ( X e. Fin /\ x : Y -onto-> X ) -> X ~<_ Y ) |
| 19 | 18 | ex | |- ( X e. Fin -> ( x : Y -onto-> X -> X ~<_ Y ) ) |
| 20 | 19 | adantr | |- ( ( X e. Fin /\ X =/= (/) ) -> ( x : Y -onto-> X -> X ~<_ Y ) ) |
| 21 | 20 | exlimdv | |- ( ( X e. Fin /\ X =/= (/) ) -> ( E. x x : Y -onto-> X -> X ~<_ Y ) ) |
| 22 | 9 21 | sylbid | |- ( ( X e. Fin /\ X =/= (/) ) -> ( X ~<_* Y -> X ~<_ Y ) ) |
| 23 | 7 22 | pm2.61dane | |- ( X e. Fin -> ( X ~<_* Y -> X ~<_ Y ) ) |
| 24 | domwdom | |- ( X ~<_ Y -> X ~<_* Y ) |
|
| 25 | 23 24 | impbid1 | |- ( X e. Fin -> ( X ~<_* Y <-> X ~<_ Y ) ) |