This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Any set dominates the empty set. (Contributed by NM, 26-Oct-2003) (Revised by Mario Carneiro, 26-Apr-2015) Avoid ax-pow , ax-un . (Revised by BTernaryTau, 29-Nov-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | 0domg | ⊢ ( 𝐴 ∈ 𝑉 → ∅ ≼ 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0ex | ⊢ ∅ ∈ V | |
| 2 | f1eq1 | ⊢ ( 𝑓 = ∅ → ( 𝑓 : ∅ –1-1→ 𝐴 ↔ ∅ : ∅ –1-1→ 𝐴 ) ) | |
| 3 | f10 | ⊢ ∅ : ∅ –1-1→ 𝐴 | |
| 4 | 1 2 3 | ceqsexv2d | ⊢ ∃ 𝑓 𝑓 : ∅ –1-1→ 𝐴 |
| 5 | brdom2g | ⊢ ( ( ∅ ∈ V ∧ 𝐴 ∈ 𝑉 ) → ( ∅ ≼ 𝐴 ↔ ∃ 𝑓 𝑓 : ∅ –1-1→ 𝐴 ) ) | |
| 6 | 1 5 | mpan | ⊢ ( 𝐴 ∈ 𝑉 → ( ∅ ≼ 𝐴 ↔ ∃ 𝑓 𝑓 : ∅ –1-1→ 𝐴 ) ) |
| 7 | 4 6 | mpbiri | ⊢ ( 𝐴 ∈ 𝑉 → ∅ ≼ 𝐴 ) |