This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The value of the vertex degree function for a loop-free graph G . (Contributed by AV, 23-Feb-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | vtxdlfgrval.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| vtxdlfgrval.i | ⊢ 𝐼 = ( iEdg ‘ 𝐺 ) | ||
| vtxdlfgrval.a | ⊢ 𝐴 = dom 𝐼 | ||
| vtxdlfgrval.d | ⊢ 𝐷 = ( VtxDeg ‘ 𝐺 ) | ||
| Assertion | vtxdlfgrval | ⊢ ( ( 𝐼 : 𝐴 ⟶ { 𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ ( ♯ ‘ 𝑥 ) } ∧ 𝑈 ∈ 𝑉 ) → ( 𝐷 ‘ 𝑈 ) = ( ♯ ‘ { 𝑥 ∈ 𝐴 ∣ 𝑈 ∈ ( 𝐼 ‘ 𝑥 ) } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vtxdlfgrval.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| 2 | vtxdlfgrval.i | ⊢ 𝐼 = ( iEdg ‘ 𝐺 ) | |
| 3 | vtxdlfgrval.a | ⊢ 𝐴 = dom 𝐼 | |
| 4 | vtxdlfgrval.d | ⊢ 𝐷 = ( VtxDeg ‘ 𝐺 ) | |
| 5 | 4 | fveq1i | ⊢ ( 𝐷 ‘ 𝑈 ) = ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑈 ) |
| 6 | 1 2 3 | vtxdgval | ⊢ ( 𝑈 ∈ 𝑉 → ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑈 ) = ( ( ♯ ‘ { 𝑥 ∈ 𝐴 ∣ 𝑈 ∈ ( 𝐼 ‘ 𝑥 ) } ) +𝑒 ( ♯ ‘ { 𝑥 ∈ 𝐴 ∣ ( 𝐼 ‘ 𝑥 ) = { 𝑈 } } ) ) ) |
| 7 | 6 | adantl | ⊢ ( ( 𝐼 : 𝐴 ⟶ { 𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ ( ♯ ‘ 𝑥 ) } ∧ 𝑈 ∈ 𝑉 ) → ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑈 ) = ( ( ♯ ‘ { 𝑥 ∈ 𝐴 ∣ 𝑈 ∈ ( 𝐼 ‘ 𝑥 ) } ) +𝑒 ( ♯ ‘ { 𝑥 ∈ 𝐴 ∣ ( 𝐼 ‘ 𝑥 ) = { 𝑈 } } ) ) ) |
| 8 | 5 7 | eqtrid | ⊢ ( ( 𝐼 : 𝐴 ⟶ { 𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ ( ♯ ‘ 𝑥 ) } ∧ 𝑈 ∈ 𝑉 ) → ( 𝐷 ‘ 𝑈 ) = ( ( ♯ ‘ { 𝑥 ∈ 𝐴 ∣ 𝑈 ∈ ( 𝐼 ‘ 𝑥 ) } ) +𝑒 ( ♯ ‘ { 𝑥 ∈ 𝐴 ∣ ( 𝐼 ‘ 𝑥 ) = { 𝑈 } } ) ) ) |
| 9 | eqid | ⊢ { 𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ ( ♯ ‘ 𝑥 ) } = { 𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ ( ♯ ‘ 𝑥 ) } | |
| 10 | 2 3 9 | lfgrnloop | ⊢ ( 𝐼 : 𝐴 ⟶ { 𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ ( ♯ ‘ 𝑥 ) } → { 𝑥 ∈ 𝐴 ∣ ( 𝐼 ‘ 𝑥 ) = { 𝑈 } } = ∅ ) |
| 11 | 10 | adantr | ⊢ ( ( 𝐼 : 𝐴 ⟶ { 𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ ( ♯ ‘ 𝑥 ) } ∧ 𝑈 ∈ 𝑉 ) → { 𝑥 ∈ 𝐴 ∣ ( 𝐼 ‘ 𝑥 ) = { 𝑈 } } = ∅ ) |
| 12 | 11 | fveq2d | ⊢ ( ( 𝐼 : 𝐴 ⟶ { 𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ ( ♯ ‘ 𝑥 ) } ∧ 𝑈 ∈ 𝑉 ) → ( ♯ ‘ { 𝑥 ∈ 𝐴 ∣ ( 𝐼 ‘ 𝑥 ) = { 𝑈 } } ) = ( ♯ ‘ ∅ ) ) |
| 13 | hash0 | ⊢ ( ♯ ‘ ∅ ) = 0 | |
| 14 | 12 13 | eqtrdi | ⊢ ( ( 𝐼 : 𝐴 ⟶ { 𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ ( ♯ ‘ 𝑥 ) } ∧ 𝑈 ∈ 𝑉 ) → ( ♯ ‘ { 𝑥 ∈ 𝐴 ∣ ( 𝐼 ‘ 𝑥 ) = { 𝑈 } } ) = 0 ) |
| 15 | 14 | oveq2d | ⊢ ( ( 𝐼 : 𝐴 ⟶ { 𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ ( ♯ ‘ 𝑥 ) } ∧ 𝑈 ∈ 𝑉 ) → ( ( ♯ ‘ { 𝑥 ∈ 𝐴 ∣ 𝑈 ∈ ( 𝐼 ‘ 𝑥 ) } ) +𝑒 ( ♯ ‘ { 𝑥 ∈ 𝐴 ∣ ( 𝐼 ‘ 𝑥 ) = { 𝑈 } } ) ) = ( ( ♯ ‘ { 𝑥 ∈ 𝐴 ∣ 𝑈 ∈ ( 𝐼 ‘ 𝑥 ) } ) +𝑒 0 ) ) |
| 16 | 2 | dmeqi | ⊢ dom 𝐼 = dom ( iEdg ‘ 𝐺 ) |
| 17 | 3 16 | eqtri | ⊢ 𝐴 = dom ( iEdg ‘ 𝐺 ) |
| 18 | fvex | ⊢ ( iEdg ‘ 𝐺 ) ∈ V | |
| 19 | 18 | dmex | ⊢ dom ( iEdg ‘ 𝐺 ) ∈ V |
| 20 | 17 19 | eqeltri | ⊢ 𝐴 ∈ V |
| 21 | 20 | rabex | ⊢ { 𝑥 ∈ 𝐴 ∣ 𝑈 ∈ ( 𝐼 ‘ 𝑥 ) } ∈ V |
| 22 | hashxnn0 | ⊢ ( { 𝑥 ∈ 𝐴 ∣ 𝑈 ∈ ( 𝐼 ‘ 𝑥 ) } ∈ V → ( ♯ ‘ { 𝑥 ∈ 𝐴 ∣ 𝑈 ∈ ( 𝐼 ‘ 𝑥 ) } ) ∈ ℕ0* ) | |
| 23 | xnn0xr | ⊢ ( ( ♯ ‘ { 𝑥 ∈ 𝐴 ∣ 𝑈 ∈ ( 𝐼 ‘ 𝑥 ) } ) ∈ ℕ0* → ( ♯ ‘ { 𝑥 ∈ 𝐴 ∣ 𝑈 ∈ ( 𝐼 ‘ 𝑥 ) } ) ∈ ℝ* ) | |
| 24 | 21 22 23 | mp2b | ⊢ ( ♯ ‘ { 𝑥 ∈ 𝐴 ∣ 𝑈 ∈ ( 𝐼 ‘ 𝑥 ) } ) ∈ ℝ* |
| 25 | xaddrid | ⊢ ( ( ♯ ‘ { 𝑥 ∈ 𝐴 ∣ 𝑈 ∈ ( 𝐼 ‘ 𝑥 ) } ) ∈ ℝ* → ( ( ♯ ‘ { 𝑥 ∈ 𝐴 ∣ 𝑈 ∈ ( 𝐼 ‘ 𝑥 ) } ) +𝑒 0 ) = ( ♯ ‘ { 𝑥 ∈ 𝐴 ∣ 𝑈 ∈ ( 𝐼 ‘ 𝑥 ) } ) ) | |
| 26 | 24 25 | mp1i | ⊢ ( ( 𝐼 : 𝐴 ⟶ { 𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ ( ♯ ‘ 𝑥 ) } ∧ 𝑈 ∈ 𝑉 ) → ( ( ♯ ‘ { 𝑥 ∈ 𝐴 ∣ 𝑈 ∈ ( 𝐼 ‘ 𝑥 ) } ) +𝑒 0 ) = ( ♯ ‘ { 𝑥 ∈ 𝐴 ∣ 𝑈 ∈ ( 𝐼 ‘ 𝑥 ) } ) ) |
| 27 | 8 15 26 | 3eqtrd | ⊢ ( ( 𝐼 : 𝐴 ⟶ { 𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ ( ♯ ‘ 𝑥 ) } ∧ 𝑈 ∈ 𝑉 ) → ( 𝐷 ‘ 𝑈 ) = ( ♯ ‘ { 𝑥 ∈ 𝐴 ∣ 𝑈 ∈ ( 𝐼 ‘ 𝑥 ) } ) ) |