This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A loop-free graph has no loops. (Contributed by AV, 23-Feb-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lfuhgrnloopv.i | ⊢ 𝐼 = ( iEdg ‘ 𝐺 ) | |
| lfuhgrnloopv.a | ⊢ 𝐴 = dom 𝐼 | ||
| lfuhgrnloopv.e | ⊢ 𝐸 = { 𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ ( ♯ ‘ 𝑥 ) } | ||
| Assertion | lfgrnloop | ⊢ ( 𝐼 : 𝐴 ⟶ 𝐸 → { 𝑥 ∈ 𝐴 ∣ ( 𝐼 ‘ 𝑥 ) = { 𝑈 } } = ∅ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lfuhgrnloopv.i | ⊢ 𝐼 = ( iEdg ‘ 𝐺 ) | |
| 2 | lfuhgrnloopv.a | ⊢ 𝐴 = dom 𝐼 | |
| 3 | lfuhgrnloopv.e | ⊢ 𝐸 = { 𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ ( ♯ ‘ 𝑥 ) } | |
| 4 | nfcv | ⊢ Ⅎ 𝑥 𝐼 | |
| 5 | nfcv | ⊢ Ⅎ 𝑥 𝐴 | |
| 6 | nfrab1 | ⊢ Ⅎ 𝑥 { 𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ ( ♯ ‘ 𝑥 ) } | |
| 7 | 3 6 | nfcxfr | ⊢ Ⅎ 𝑥 𝐸 |
| 8 | 4 5 7 | nff | ⊢ Ⅎ 𝑥 𝐼 : 𝐴 ⟶ 𝐸 |
| 9 | hashsn01 | ⊢ ( ( ♯ ‘ { 𝑈 } ) = 0 ∨ ( ♯ ‘ { 𝑈 } ) = 1 ) | |
| 10 | 2pos | ⊢ 0 < 2 | |
| 11 | 0re | ⊢ 0 ∈ ℝ | |
| 12 | 2re | ⊢ 2 ∈ ℝ | |
| 13 | 11 12 | ltnlei | ⊢ ( 0 < 2 ↔ ¬ 2 ≤ 0 ) |
| 14 | 10 13 | mpbi | ⊢ ¬ 2 ≤ 0 |
| 15 | breq2 | ⊢ ( ( ♯ ‘ { 𝑈 } ) = 0 → ( 2 ≤ ( ♯ ‘ { 𝑈 } ) ↔ 2 ≤ 0 ) ) | |
| 16 | 14 15 | mtbiri | ⊢ ( ( ♯ ‘ { 𝑈 } ) = 0 → ¬ 2 ≤ ( ♯ ‘ { 𝑈 } ) ) |
| 17 | 1lt2 | ⊢ 1 < 2 | |
| 18 | 1re | ⊢ 1 ∈ ℝ | |
| 19 | 18 12 | ltnlei | ⊢ ( 1 < 2 ↔ ¬ 2 ≤ 1 ) |
| 20 | 17 19 | mpbi | ⊢ ¬ 2 ≤ 1 |
| 21 | breq2 | ⊢ ( ( ♯ ‘ { 𝑈 } ) = 1 → ( 2 ≤ ( ♯ ‘ { 𝑈 } ) ↔ 2 ≤ 1 ) ) | |
| 22 | 20 21 | mtbiri | ⊢ ( ( ♯ ‘ { 𝑈 } ) = 1 → ¬ 2 ≤ ( ♯ ‘ { 𝑈 } ) ) |
| 23 | 16 22 | jaoi | ⊢ ( ( ( ♯ ‘ { 𝑈 } ) = 0 ∨ ( ♯ ‘ { 𝑈 } ) = 1 ) → ¬ 2 ≤ ( ♯ ‘ { 𝑈 } ) ) |
| 24 | 9 23 | ax-mp | ⊢ ¬ 2 ≤ ( ♯ ‘ { 𝑈 } ) |
| 25 | fveq2 | ⊢ ( ( 𝐼 ‘ 𝑥 ) = { 𝑈 } → ( ♯ ‘ ( 𝐼 ‘ 𝑥 ) ) = ( ♯ ‘ { 𝑈 } ) ) | |
| 26 | 25 | breq2d | ⊢ ( ( 𝐼 ‘ 𝑥 ) = { 𝑈 } → ( 2 ≤ ( ♯ ‘ ( 𝐼 ‘ 𝑥 ) ) ↔ 2 ≤ ( ♯ ‘ { 𝑈 } ) ) ) |
| 27 | 24 26 | mtbiri | ⊢ ( ( 𝐼 ‘ 𝑥 ) = { 𝑈 } → ¬ 2 ≤ ( ♯ ‘ ( 𝐼 ‘ 𝑥 ) ) ) |
| 28 | 1 2 3 | lfgredgge2 | ⊢ ( ( 𝐼 : 𝐴 ⟶ 𝐸 ∧ 𝑥 ∈ 𝐴 ) → 2 ≤ ( ♯ ‘ ( 𝐼 ‘ 𝑥 ) ) ) |
| 29 | 27 28 | nsyl3 | ⊢ ( ( 𝐼 : 𝐴 ⟶ 𝐸 ∧ 𝑥 ∈ 𝐴 ) → ¬ ( 𝐼 ‘ 𝑥 ) = { 𝑈 } ) |
| 30 | 29 | ex | ⊢ ( 𝐼 : 𝐴 ⟶ 𝐸 → ( 𝑥 ∈ 𝐴 → ¬ ( 𝐼 ‘ 𝑥 ) = { 𝑈 } ) ) |
| 31 | 8 30 | ralrimi | ⊢ ( 𝐼 : 𝐴 ⟶ 𝐸 → ∀ 𝑥 ∈ 𝐴 ¬ ( 𝐼 ‘ 𝑥 ) = { 𝑈 } ) |
| 32 | rabeq0 | ⊢ ( { 𝑥 ∈ 𝐴 ∣ ( 𝐼 ‘ 𝑥 ) = { 𝑈 } } = ∅ ↔ ∀ 𝑥 ∈ 𝐴 ¬ ( 𝐼 ‘ 𝑥 ) = { 𝑈 } ) | |
| 33 | 31 32 | sylibr | ⊢ ( 𝐼 : 𝐴 ⟶ 𝐸 → { 𝑥 ∈ 𝐴 ∣ ( 𝐼 ‘ 𝑥 ) = { 𝑈 } } = ∅ ) |