This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The value of the vertex degree function for a loop-free graph G . (Contributed by AV, 23-Feb-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | vtxdlfgrval.v | |- V = ( Vtx ` G ) |
|
| vtxdlfgrval.i | |- I = ( iEdg ` G ) |
||
| vtxdlfgrval.a | |- A = dom I |
||
| vtxdlfgrval.d | |- D = ( VtxDeg ` G ) |
||
| Assertion | vtxdlfgrval | |- ( ( I : A --> { x e. ~P V | 2 <_ ( # ` x ) } /\ U e. V ) -> ( D ` U ) = ( # ` { x e. A | U e. ( I ` x ) } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vtxdlfgrval.v | |- V = ( Vtx ` G ) |
|
| 2 | vtxdlfgrval.i | |- I = ( iEdg ` G ) |
|
| 3 | vtxdlfgrval.a | |- A = dom I |
|
| 4 | vtxdlfgrval.d | |- D = ( VtxDeg ` G ) |
|
| 5 | 4 | fveq1i | |- ( D ` U ) = ( ( VtxDeg ` G ) ` U ) |
| 6 | 1 2 3 | vtxdgval | |- ( U e. V -> ( ( VtxDeg ` G ) ` U ) = ( ( # ` { x e. A | U e. ( I ` x ) } ) +e ( # ` { x e. A | ( I ` x ) = { U } } ) ) ) |
| 7 | 6 | adantl | |- ( ( I : A --> { x e. ~P V | 2 <_ ( # ` x ) } /\ U e. V ) -> ( ( VtxDeg ` G ) ` U ) = ( ( # ` { x e. A | U e. ( I ` x ) } ) +e ( # ` { x e. A | ( I ` x ) = { U } } ) ) ) |
| 8 | 5 7 | eqtrid | |- ( ( I : A --> { x e. ~P V | 2 <_ ( # ` x ) } /\ U e. V ) -> ( D ` U ) = ( ( # ` { x e. A | U e. ( I ` x ) } ) +e ( # ` { x e. A | ( I ` x ) = { U } } ) ) ) |
| 9 | eqid | |- { x e. ~P V | 2 <_ ( # ` x ) } = { x e. ~P V | 2 <_ ( # ` x ) } |
|
| 10 | 2 3 9 | lfgrnloop | |- ( I : A --> { x e. ~P V | 2 <_ ( # ` x ) } -> { x e. A | ( I ` x ) = { U } } = (/) ) |
| 11 | 10 | adantr | |- ( ( I : A --> { x e. ~P V | 2 <_ ( # ` x ) } /\ U e. V ) -> { x e. A | ( I ` x ) = { U } } = (/) ) |
| 12 | 11 | fveq2d | |- ( ( I : A --> { x e. ~P V | 2 <_ ( # ` x ) } /\ U e. V ) -> ( # ` { x e. A | ( I ` x ) = { U } } ) = ( # ` (/) ) ) |
| 13 | hash0 | |- ( # ` (/) ) = 0 |
|
| 14 | 12 13 | eqtrdi | |- ( ( I : A --> { x e. ~P V | 2 <_ ( # ` x ) } /\ U e. V ) -> ( # ` { x e. A | ( I ` x ) = { U } } ) = 0 ) |
| 15 | 14 | oveq2d | |- ( ( I : A --> { x e. ~P V | 2 <_ ( # ` x ) } /\ U e. V ) -> ( ( # ` { x e. A | U e. ( I ` x ) } ) +e ( # ` { x e. A | ( I ` x ) = { U } } ) ) = ( ( # ` { x e. A | U e. ( I ` x ) } ) +e 0 ) ) |
| 16 | 2 | dmeqi | |- dom I = dom ( iEdg ` G ) |
| 17 | 3 16 | eqtri | |- A = dom ( iEdg ` G ) |
| 18 | fvex | |- ( iEdg ` G ) e. _V |
|
| 19 | 18 | dmex | |- dom ( iEdg ` G ) e. _V |
| 20 | 17 19 | eqeltri | |- A e. _V |
| 21 | 20 | rabex | |- { x e. A | U e. ( I ` x ) } e. _V |
| 22 | hashxnn0 | |- ( { x e. A | U e. ( I ` x ) } e. _V -> ( # ` { x e. A | U e. ( I ` x ) } ) e. NN0* ) |
|
| 23 | xnn0xr | |- ( ( # ` { x e. A | U e. ( I ` x ) } ) e. NN0* -> ( # ` { x e. A | U e. ( I ` x ) } ) e. RR* ) |
|
| 24 | 21 22 23 | mp2b | |- ( # ` { x e. A | U e. ( I ` x ) } ) e. RR* |
| 25 | xaddrid | |- ( ( # ` { x e. A | U e. ( I ` x ) } ) e. RR* -> ( ( # ` { x e. A | U e. ( I ` x ) } ) +e 0 ) = ( # ` { x e. A | U e. ( I ` x ) } ) ) |
|
| 26 | 24 25 | mp1i | |- ( ( I : A --> { x e. ~P V | 2 <_ ( # ` x ) } /\ U e. V ) -> ( ( # ` { x e. A | U e. ( I ` x ) } ) +e 0 ) = ( # ` { x e. A | U e. ( I ` x ) } ) ) |
| 27 | 8 15 26 | 3eqtrd | |- ( ( I : A --> { x e. ~P V | 2 <_ ( # ` x ) } /\ U e. V ) -> ( D ` U ) = ( # ` { x e. A | U e. ( I ` x ) } ) ) |