This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The value of the vertex degree function for a multigraph. (Contributed by Alexander van der Vekens, 20-Dec-2017) (Revised by AV, 23-Feb-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | vtxdlfgrval.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| vtxdlfgrval.i | ⊢ 𝐼 = ( iEdg ‘ 𝐺 ) | ||
| vtxdlfgrval.a | ⊢ 𝐴 = dom 𝐼 | ||
| vtxdlfgrval.d | ⊢ 𝐷 = ( VtxDeg ‘ 𝐺 ) | ||
| Assertion | vtxdumgrval | ⊢ ( ( 𝐺 ∈ UMGraph ∧ 𝑈 ∈ 𝑉 ) → ( 𝐷 ‘ 𝑈 ) = ( ♯ ‘ { 𝑥 ∈ 𝐴 ∣ 𝑈 ∈ ( 𝐼 ‘ 𝑥 ) } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vtxdlfgrval.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| 2 | vtxdlfgrval.i | ⊢ 𝐼 = ( iEdg ‘ 𝐺 ) | |
| 3 | vtxdlfgrval.a | ⊢ 𝐴 = dom 𝐼 | |
| 4 | vtxdlfgrval.d | ⊢ 𝐷 = ( VtxDeg ‘ 𝐺 ) | |
| 5 | 1 2 | umgrislfupgr | ⊢ ( 𝐺 ∈ UMGraph ↔ ( 𝐺 ∈ UPGraph ∧ 𝐼 : dom 𝐼 ⟶ { 𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ ( ♯ ‘ 𝑥 ) } ) ) |
| 6 | 3 | eqcomi | ⊢ dom 𝐼 = 𝐴 |
| 7 | 6 | feq2i | ⊢ ( 𝐼 : dom 𝐼 ⟶ { 𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ ( ♯ ‘ 𝑥 ) } ↔ 𝐼 : 𝐴 ⟶ { 𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ ( ♯ ‘ 𝑥 ) } ) |
| 8 | 7 | biimpi | ⊢ ( 𝐼 : dom 𝐼 ⟶ { 𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ ( ♯ ‘ 𝑥 ) } → 𝐼 : 𝐴 ⟶ { 𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ ( ♯ ‘ 𝑥 ) } ) |
| 9 | 5 8 | simplbiim | ⊢ ( 𝐺 ∈ UMGraph → 𝐼 : 𝐴 ⟶ { 𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ ( ♯ ‘ 𝑥 ) } ) |
| 10 | 1 2 3 4 | vtxdlfgrval | ⊢ ( ( 𝐼 : 𝐴 ⟶ { 𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ ( ♯ ‘ 𝑥 ) } ∧ 𝑈 ∈ 𝑉 ) → ( 𝐷 ‘ 𝑈 ) = ( ♯ ‘ { 𝑥 ∈ 𝐴 ∣ 𝑈 ∈ ( 𝐼 ‘ 𝑥 ) } ) ) |
| 11 | 9 10 | sylan | ⊢ ( ( 𝐺 ∈ UMGraph ∧ 𝑈 ∈ 𝑉 ) → ( 𝐷 ‘ 𝑈 ) = ( ♯ ‘ { 𝑥 ∈ 𝐴 ∣ 𝑈 ∈ ( 𝐼 ‘ 𝑥 ) } ) ) |