This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The degree of a vertex v in the induced subgraph S of a pseudograph G of finite size obtained by removing one vertex N plus the number of edges joining the vertex v and the vertex N is the degree of the vertex v in the pseudograph G . (Contributed by AV, 18-Dec-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | vtxdginducedm1.v | |- V = ( Vtx ` G ) |
|
| vtxdginducedm1.e | |- E = ( iEdg ` G ) |
||
| vtxdginducedm1.k | |- K = ( V \ { N } ) |
||
| vtxdginducedm1.i | |- I = { i e. dom E | N e/ ( E ` i ) } |
||
| vtxdginducedm1.p | |- P = ( E |` I ) |
||
| vtxdginducedm1.s | |- S = <. K , P >. |
||
| vtxdginducedm1.j | |- J = { i e. dom E | N e. ( E ` i ) } |
||
| Assertion | vtxdginducedm1fi | |- ( E e. Fin -> A. v e. ( V \ { N } ) ( ( VtxDeg ` G ) ` v ) = ( ( ( VtxDeg ` S ) ` v ) + ( # ` { l e. J | v e. ( E ` l ) } ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vtxdginducedm1.v | |- V = ( Vtx ` G ) |
|
| 2 | vtxdginducedm1.e | |- E = ( iEdg ` G ) |
|
| 3 | vtxdginducedm1.k | |- K = ( V \ { N } ) |
|
| 4 | vtxdginducedm1.i | |- I = { i e. dom E | N e/ ( E ` i ) } |
|
| 5 | vtxdginducedm1.p | |- P = ( E |` I ) |
|
| 6 | vtxdginducedm1.s | |- S = <. K , P >. |
|
| 7 | vtxdginducedm1.j | |- J = { i e. dom E | N e. ( E ` i ) } |
|
| 8 | 1 2 3 4 5 6 7 | vtxdginducedm1 | |- A. v e. ( V \ { N } ) ( ( VtxDeg ` G ) ` v ) = ( ( ( VtxDeg ` S ) ` v ) +e ( # ` { l e. J | v e. ( E ` l ) } ) ) |
| 9 | 5 | dmeqi | |- dom P = dom ( E |` I ) |
| 10 | finresfin | |- ( E e. Fin -> ( E |` I ) e. Fin ) |
|
| 11 | dmfi | |- ( ( E |` I ) e. Fin -> dom ( E |` I ) e. Fin ) |
|
| 12 | 10 11 | syl | |- ( E e. Fin -> dom ( E |` I ) e. Fin ) |
| 13 | 9 12 | eqeltrid | |- ( E e. Fin -> dom P e. Fin ) |
| 14 | 6 | fveq2i | |- ( Vtx ` S ) = ( Vtx ` <. K , P >. ) |
| 15 | 1 | fvexi | |- V e. _V |
| 16 | 15 | difexi | |- ( V \ { N } ) e. _V |
| 17 | 3 16 | eqeltri | |- K e. _V |
| 18 | 2 | fvexi | |- E e. _V |
| 19 | 18 | resex | |- ( E |` I ) e. _V |
| 20 | 5 19 | eqeltri | |- P e. _V |
| 21 | 17 20 | opvtxfvi | |- ( Vtx ` <. K , P >. ) = K |
| 22 | 14 21 3 | 3eqtrri | |- ( V \ { N } ) = ( Vtx ` S ) |
| 23 | 1 2 3 4 5 6 | vtxdginducedm1lem1 | |- ( iEdg ` S ) = P |
| 24 | 23 | eqcomi | |- P = ( iEdg ` S ) |
| 25 | eqid | |- dom P = dom P |
|
| 26 | 22 24 25 | vtxdgfisnn0 | |- ( ( dom P e. Fin /\ v e. ( V \ { N } ) ) -> ( ( VtxDeg ` S ) ` v ) e. NN0 ) |
| 27 | 13 26 | sylan | |- ( ( E e. Fin /\ v e. ( V \ { N } ) ) -> ( ( VtxDeg ` S ) ` v ) e. NN0 ) |
| 28 | 27 | nn0red | |- ( ( E e. Fin /\ v e. ( V \ { N } ) ) -> ( ( VtxDeg ` S ) ` v ) e. RR ) |
| 29 | dmfi | |- ( E e. Fin -> dom E e. Fin ) |
|
| 30 | rabfi | |- ( dom E e. Fin -> { i e. dom E | N e. ( E ` i ) } e. Fin ) |
|
| 31 | 29 30 | syl | |- ( E e. Fin -> { i e. dom E | N e. ( E ` i ) } e. Fin ) |
| 32 | 7 31 | eqeltrid | |- ( E e. Fin -> J e. Fin ) |
| 33 | rabfi | |- ( J e. Fin -> { l e. J | v e. ( E ` l ) } e. Fin ) |
|
| 34 | hashcl | |- ( { l e. J | v e. ( E ` l ) } e. Fin -> ( # ` { l e. J | v e. ( E ` l ) } ) e. NN0 ) |
|
| 35 | 32 33 34 | 3syl | |- ( E e. Fin -> ( # ` { l e. J | v e. ( E ` l ) } ) e. NN0 ) |
| 36 | 35 | adantr | |- ( ( E e. Fin /\ v e. ( V \ { N } ) ) -> ( # ` { l e. J | v e. ( E ` l ) } ) e. NN0 ) |
| 37 | 36 | nn0red | |- ( ( E e. Fin /\ v e. ( V \ { N } ) ) -> ( # ` { l e. J | v e. ( E ` l ) } ) e. RR ) |
| 38 | 28 37 | rexaddd | |- ( ( E e. Fin /\ v e. ( V \ { N } ) ) -> ( ( ( VtxDeg ` S ) ` v ) +e ( # ` { l e. J | v e. ( E ` l ) } ) ) = ( ( ( VtxDeg ` S ) ` v ) + ( # ` { l e. J | v e. ( E ` l ) } ) ) ) |
| 39 | 38 | eqeq2d | |- ( ( E e. Fin /\ v e. ( V \ { N } ) ) -> ( ( ( VtxDeg ` G ) ` v ) = ( ( ( VtxDeg ` S ) ` v ) +e ( # ` { l e. J | v e. ( E ` l ) } ) ) <-> ( ( VtxDeg ` G ) ` v ) = ( ( ( VtxDeg ` S ) ` v ) + ( # ` { l e. J | v e. ( E ` l ) } ) ) ) ) |
| 40 | 39 | biimpd | |- ( ( E e. Fin /\ v e. ( V \ { N } ) ) -> ( ( ( VtxDeg ` G ) ` v ) = ( ( ( VtxDeg ` S ) ` v ) +e ( # ` { l e. J | v e. ( E ` l ) } ) ) -> ( ( VtxDeg ` G ) ` v ) = ( ( ( VtxDeg ` S ) ` v ) + ( # ` { l e. J | v e. ( E ` l ) } ) ) ) ) |
| 41 | 40 | ralimdva | |- ( E e. Fin -> ( A. v e. ( V \ { N } ) ( ( VtxDeg ` G ) ` v ) = ( ( ( VtxDeg ` S ) ` v ) +e ( # ` { l e. J | v e. ( E ` l ) } ) ) -> A. v e. ( V \ { N } ) ( ( VtxDeg ` G ) ` v ) = ( ( ( VtxDeg ` S ) ` v ) + ( # ` { l e. J | v e. ( E ` l ) } ) ) ) ) |
| 42 | 8 41 | mpi | |- ( E e. Fin -> A. v e. ( V \ { N } ) ( ( VtxDeg ` G ) ` v ) = ( ( ( VtxDeg ` S ) ` v ) + ( # ` { l e. J | v e. ( E ` l ) } ) ) ) |