This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for finsumvtxdg2sstep . (Contributed by AV, 15-Dec-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | finsumvtxdg2sstep.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| finsumvtxdg2sstep.e | ⊢ 𝐸 = ( iEdg ‘ 𝐺 ) | ||
| finsumvtxdg2sstep.k | ⊢ 𝐾 = ( 𝑉 ∖ { 𝑁 } ) | ||
| finsumvtxdg2sstep.i | ⊢ 𝐼 = { 𝑖 ∈ dom 𝐸 ∣ 𝑁 ∉ ( 𝐸 ‘ 𝑖 ) } | ||
| finsumvtxdg2sstep.p | ⊢ 𝑃 = ( 𝐸 ↾ 𝐼 ) | ||
| finsumvtxdg2sstep.s | ⊢ 𝑆 = 〈 𝐾 , 𝑃 〉 | ||
| finsumvtxdg2ssteplem.j | ⊢ 𝐽 = { 𝑖 ∈ dom 𝐸 ∣ 𝑁 ∈ ( 𝐸 ‘ 𝑖 ) } | ||
| Assertion | finsumvtxdg2ssteplem1 | ⊢ ( ( ( 𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉 ) ∧ ( 𝑉 ∈ Fin ∧ 𝐸 ∈ Fin ) ) → ( ♯ ‘ 𝐸 ) = ( ( ♯ ‘ 𝑃 ) + ( ♯ ‘ 𝐽 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | finsumvtxdg2sstep.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| 2 | finsumvtxdg2sstep.e | ⊢ 𝐸 = ( iEdg ‘ 𝐺 ) | |
| 3 | finsumvtxdg2sstep.k | ⊢ 𝐾 = ( 𝑉 ∖ { 𝑁 } ) | |
| 4 | finsumvtxdg2sstep.i | ⊢ 𝐼 = { 𝑖 ∈ dom 𝐸 ∣ 𝑁 ∉ ( 𝐸 ‘ 𝑖 ) } | |
| 5 | finsumvtxdg2sstep.p | ⊢ 𝑃 = ( 𝐸 ↾ 𝐼 ) | |
| 6 | finsumvtxdg2sstep.s | ⊢ 𝑆 = 〈 𝐾 , 𝑃 〉 | |
| 7 | finsumvtxdg2ssteplem.j | ⊢ 𝐽 = { 𝑖 ∈ dom 𝐸 ∣ 𝑁 ∈ ( 𝐸 ‘ 𝑖 ) } | |
| 8 | upgruhgr | ⊢ ( 𝐺 ∈ UPGraph → 𝐺 ∈ UHGraph ) | |
| 9 | 2 | uhgrfun | ⊢ ( 𝐺 ∈ UHGraph → Fun 𝐸 ) |
| 10 | 8 9 | syl | ⊢ ( 𝐺 ∈ UPGraph → Fun 𝐸 ) |
| 11 | 10 | ad2antrr | ⊢ ( ( ( 𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉 ) ∧ ( 𝑉 ∈ Fin ∧ 𝐸 ∈ Fin ) ) → Fun 𝐸 ) |
| 12 | simprr | ⊢ ( ( ( 𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉 ) ∧ ( 𝑉 ∈ Fin ∧ 𝐸 ∈ Fin ) ) → 𝐸 ∈ Fin ) | |
| 13 | 4 | ssrab3 | ⊢ 𝐼 ⊆ dom 𝐸 |
| 14 | 13 | a1i | ⊢ ( ( ( 𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉 ) ∧ ( 𝑉 ∈ Fin ∧ 𝐸 ∈ Fin ) ) → 𝐼 ⊆ dom 𝐸 ) |
| 15 | hashreshashfun | ⊢ ( ( Fun 𝐸 ∧ 𝐸 ∈ Fin ∧ 𝐼 ⊆ dom 𝐸 ) → ( ♯ ‘ 𝐸 ) = ( ( ♯ ‘ ( 𝐸 ↾ 𝐼 ) ) + ( ♯ ‘ ( dom 𝐸 ∖ 𝐼 ) ) ) ) | |
| 16 | 11 12 14 15 | syl3anc | ⊢ ( ( ( 𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉 ) ∧ ( 𝑉 ∈ Fin ∧ 𝐸 ∈ Fin ) ) → ( ♯ ‘ 𝐸 ) = ( ( ♯ ‘ ( 𝐸 ↾ 𝐼 ) ) + ( ♯ ‘ ( dom 𝐸 ∖ 𝐼 ) ) ) ) |
| 17 | 5 | eqcomi | ⊢ ( 𝐸 ↾ 𝐼 ) = 𝑃 |
| 18 | 17 | fveq2i | ⊢ ( ♯ ‘ ( 𝐸 ↾ 𝐼 ) ) = ( ♯ ‘ 𝑃 ) |
| 19 | 18 | a1i | ⊢ ( ( ( 𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉 ) ∧ ( 𝑉 ∈ Fin ∧ 𝐸 ∈ Fin ) ) → ( ♯ ‘ ( 𝐸 ↾ 𝐼 ) ) = ( ♯ ‘ 𝑃 ) ) |
| 20 | notrab | ⊢ ( dom 𝐸 ∖ { 𝑖 ∈ dom 𝐸 ∣ 𝑁 ∉ ( 𝐸 ‘ 𝑖 ) } ) = { 𝑖 ∈ dom 𝐸 ∣ ¬ 𝑁 ∉ ( 𝐸 ‘ 𝑖 ) } | |
| 21 | 4 | difeq2i | ⊢ ( dom 𝐸 ∖ 𝐼 ) = ( dom 𝐸 ∖ { 𝑖 ∈ dom 𝐸 ∣ 𝑁 ∉ ( 𝐸 ‘ 𝑖 ) } ) |
| 22 | nnel | ⊢ ( ¬ 𝑁 ∉ ( 𝐸 ‘ 𝑖 ) ↔ 𝑁 ∈ ( 𝐸 ‘ 𝑖 ) ) | |
| 23 | 22 | bicomi | ⊢ ( 𝑁 ∈ ( 𝐸 ‘ 𝑖 ) ↔ ¬ 𝑁 ∉ ( 𝐸 ‘ 𝑖 ) ) |
| 24 | 23 | rabbii | ⊢ { 𝑖 ∈ dom 𝐸 ∣ 𝑁 ∈ ( 𝐸 ‘ 𝑖 ) } = { 𝑖 ∈ dom 𝐸 ∣ ¬ 𝑁 ∉ ( 𝐸 ‘ 𝑖 ) } |
| 25 | 7 24 | eqtri | ⊢ 𝐽 = { 𝑖 ∈ dom 𝐸 ∣ ¬ 𝑁 ∉ ( 𝐸 ‘ 𝑖 ) } |
| 26 | 20 21 25 | 3eqtr4i | ⊢ ( dom 𝐸 ∖ 𝐼 ) = 𝐽 |
| 27 | 26 | a1i | ⊢ ( ( ( 𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉 ) ∧ ( 𝑉 ∈ Fin ∧ 𝐸 ∈ Fin ) ) → ( dom 𝐸 ∖ 𝐼 ) = 𝐽 ) |
| 28 | 27 | fveq2d | ⊢ ( ( ( 𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉 ) ∧ ( 𝑉 ∈ Fin ∧ 𝐸 ∈ Fin ) ) → ( ♯ ‘ ( dom 𝐸 ∖ 𝐼 ) ) = ( ♯ ‘ 𝐽 ) ) |
| 29 | 19 28 | oveq12d | ⊢ ( ( ( 𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉 ) ∧ ( 𝑉 ∈ Fin ∧ 𝐸 ∈ Fin ) ) → ( ( ♯ ‘ ( 𝐸 ↾ 𝐼 ) ) + ( ♯ ‘ ( dom 𝐸 ∖ 𝐼 ) ) ) = ( ( ♯ ‘ 𝑃 ) + ( ♯ ‘ 𝐽 ) ) ) |
| 30 | 16 29 | eqtrd | ⊢ ( ( ( 𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉 ) ∧ ( 𝑉 ∈ Fin ∧ 𝐸 ∈ Fin ) ) → ( ♯ ‘ 𝐸 ) = ( ( ♯ ‘ 𝑃 ) + ( ♯ ‘ 𝐽 ) ) ) |