This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The value of the vertex degree function. (Contributed by Mario Carneiro, 12-Mar-2015) (Revised by Alexander van der Vekens, 20-Dec-2017) (Revised by AV, 9-Dec-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | vtxdgfval.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| vtxdgfval.i | ⊢ 𝐼 = ( iEdg ‘ 𝐺 ) | ||
| vtxdgfval.a | ⊢ 𝐴 = dom 𝐼 | ||
| Assertion | vtxdgfval | ⊢ ( 𝐺 ∈ 𝑊 → ( VtxDeg ‘ 𝐺 ) = ( 𝑢 ∈ 𝑉 ↦ ( ( ♯ ‘ { 𝑥 ∈ 𝐴 ∣ 𝑢 ∈ ( 𝐼 ‘ 𝑥 ) } ) +𝑒 ( ♯ ‘ { 𝑥 ∈ 𝐴 ∣ ( 𝐼 ‘ 𝑥 ) = { 𝑢 } } ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vtxdgfval.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| 2 | vtxdgfval.i | ⊢ 𝐼 = ( iEdg ‘ 𝐺 ) | |
| 3 | vtxdgfval.a | ⊢ 𝐴 = dom 𝐼 | |
| 4 | df-vtxdg | ⊢ VtxDeg = ( 𝑔 ∈ V ↦ ⦋ ( Vtx ‘ 𝑔 ) / 𝑣 ⦌ ⦋ ( iEdg ‘ 𝑔 ) / 𝑒 ⦌ ( 𝑢 ∈ 𝑣 ↦ ( ( ♯ ‘ { 𝑥 ∈ dom 𝑒 ∣ 𝑢 ∈ ( 𝑒 ‘ 𝑥 ) } ) +𝑒 ( ♯ ‘ { 𝑥 ∈ dom 𝑒 ∣ ( 𝑒 ‘ 𝑥 ) = { 𝑢 } } ) ) ) ) | |
| 5 | fvex | ⊢ ( Vtx ‘ 𝑔 ) ∈ V | |
| 6 | fvex | ⊢ ( iEdg ‘ 𝑔 ) ∈ V | |
| 7 | simpl | ⊢ ( ( 𝑣 = ( Vtx ‘ 𝑔 ) ∧ 𝑒 = ( iEdg ‘ 𝑔 ) ) → 𝑣 = ( Vtx ‘ 𝑔 ) ) | |
| 8 | dmeq | ⊢ ( 𝑒 = ( iEdg ‘ 𝑔 ) → dom 𝑒 = dom ( iEdg ‘ 𝑔 ) ) | |
| 9 | fveq1 | ⊢ ( 𝑒 = ( iEdg ‘ 𝑔 ) → ( 𝑒 ‘ 𝑥 ) = ( ( iEdg ‘ 𝑔 ) ‘ 𝑥 ) ) | |
| 10 | 9 | eleq2d | ⊢ ( 𝑒 = ( iEdg ‘ 𝑔 ) → ( 𝑢 ∈ ( 𝑒 ‘ 𝑥 ) ↔ 𝑢 ∈ ( ( iEdg ‘ 𝑔 ) ‘ 𝑥 ) ) ) |
| 11 | 8 10 | rabeqbidv | ⊢ ( 𝑒 = ( iEdg ‘ 𝑔 ) → { 𝑥 ∈ dom 𝑒 ∣ 𝑢 ∈ ( 𝑒 ‘ 𝑥 ) } = { 𝑥 ∈ dom ( iEdg ‘ 𝑔 ) ∣ 𝑢 ∈ ( ( iEdg ‘ 𝑔 ) ‘ 𝑥 ) } ) |
| 12 | 11 | fveq2d | ⊢ ( 𝑒 = ( iEdg ‘ 𝑔 ) → ( ♯ ‘ { 𝑥 ∈ dom 𝑒 ∣ 𝑢 ∈ ( 𝑒 ‘ 𝑥 ) } ) = ( ♯ ‘ { 𝑥 ∈ dom ( iEdg ‘ 𝑔 ) ∣ 𝑢 ∈ ( ( iEdg ‘ 𝑔 ) ‘ 𝑥 ) } ) ) |
| 13 | 9 | eqeq1d | ⊢ ( 𝑒 = ( iEdg ‘ 𝑔 ) → ( ( 𝑒 ‘ 𝑥 ) = { 𝑢 } ↔ ( ( iEdg ‘ 𝑔 ) ‘ 𝑥 ) = { 𝑢 } ) ) |
| 14 | 8 13 | rabeqbidv | ⊢ ( 𝑒 = ( iEdg ‘ 𝑔 ) → { 𝑥 ∈ dom 𝑒 ∣ ( 𝑒 ‘ 𝑥 ) = { 𝑢 } } = { 𝑥 ∈ dom ( iEdg ‘ 𝑔 ) ∣ ( ( iEdg ‘ 𝑔 ) ‘ 𝑥 ) = { 𝑢 } } ) |
| 15 | 14 | fveq2d | ⊢ ( 𝑒 = ( iEdg ‘ 𝑔 ) → ( ♯ ‘ { 𝑥 ∈ dom 𝑒 ∣ ( 𝑒 ‘ 𝑥 ) = { 𝑢 } } ) = ( ♯ ‘ { 𝑥 ∈ dom ( iEdg ‘ 𝑔 ) ∣ ( ( iEdg ‘ 𝑔 ) ‘ 𝑥 ) = { 𝑢 } } ) ) |
| 16 | 12 15 | oveq12d | ⊢ ( 𝑒 = ( iEdg ‘ 𝑔 ) → ( ( ♯ ‘ { 𝑥 ∈ dom 𝑒 ∣ 𝑢 ∈ ( 𝑒 ‘ 𝑥 ) } ) +𝑒 ( ♯ ‘ { 𝑥 ∈ dom 𝑒 ∣ ( 𝑒 ‘ 𝑥 ) = { 𝑢 } } ) ) = ( ( ♯ ‘ { 𝑥 ∈ dom ( iEdg ‘ 𝑔 ) ∣ 𝑢 ∈ ( ( iEdg ‘ 𝑔 ) ‘ 𝑥 ) } ) +𝑒 ( ♯ ‘ { 𝑥 ∈ dom ( iEdg ‘ 𝑔 ) ∣ ( ( iEdg ‘ 𝑔 ) ‘ 𝑥 ) = { 𝑢 } } ) ) ) |
| 17 | 16 | adantl | ⊢ ( ( 𝑣 = ( Vtx ‘ 𝑔 ) ∧ 𝑒 = ( iEdg ‘ 𝑔 ) ) → ( ( ♯ ‘ { 𝑥 ∈ dom 𝑒 ∣ 𝑢 ∈ ( 𝑒 ‘ 𝑥 ) } ) +𝑒 ( ♯ ‘ { 𝑥 ∈ dom 𝑒 ∣ ( 𝑒 ‘ 𝑥 ) = { 𝑢 } } ) ) = ( ( ♯ ‘ { 𝑥 ∈ dom ( iEdg ‘ 𝑔 ) ∣ 𝑢 ∈ ( ( iEdg ‘ 𝑔 ) ‘ 𝑥 ) } ) +𝑒 ( ♯ ‘ { 𝑥 ∈ dom ( iEdg ‘ 𝑔 ) ∣ ( ( iEdg ‘ 𝑔 ) ‘ 𝑥 ) = { 𝑢 } } ) ) ) |
| 18 | 7 17 | mpteq12dv | ⊢ ( ( 𝑣 = ( Vtx ‘ 𝑔 ) ∧ 𝑒 = ( iEdg ‘ 𝑔 ) ) → ( 𝑢 ∈ 𝑣 ↦ ( ( ♯ ‘ { 𝑥 ∈ dom 𝑒 ∣ 𝑢 ∈ ( 𝑒 ‘ 𝑥 ) } ) +𝑒 ( ♯ ‘ { 𝑥 ∈ dom 𝑒 ∣ ( 𝑒 ‘ 𝑥 ) = { 𝑢 } } ) ) ) = ( 𝑢 ∈ ( Vtx ‘ 𝑔 ) ↦ ( ( ♯ ‘ { 𝑥 ∈ dom ( iEdg ‘ 𝑔 ) ∣ 𝑢 ∈ ( ( iEdg ‘ 𝑔 ) ‘ 𝑥 ) } ) +𝑒 ( ♯ ‘ { 𝑥 ∈ dom ( iEdg ‘ 𝑔 ) ∣ ( ( iEdg ‘ 𝑔 ) ‘ 𝑥 ) = { 𝑢 } } ) ) ) ) |
| 19 | 5 6 18 | csbie2 | ⊢ ⦋ ( Vtx ‘ 𝑔 ) / 𝑣 ⦌ ⦋ ( iEdg ‘ 𝑔 ) / 𝑒 ⦌ ( 𝑢 ∈ 𝑣 ↦ ( ( ♯ ‘ { 𝑥 ∈ dom 𝑒 ∣ 𝑢 ∈ ( 𝑒 ‘ 𝑥 ) } ) +𝑒 ( ♯ ‘ { 𝑥 ∈ dom 𝑒 ∣ ( 𝑒 ‘ 𝑥 ) = { 𝑢 } } ) ) ) = ( 𝑢 ∈ ( Vtx ‘ 𝑔 ) ↦ ( ( ♯ ‘ { 𝑥 ∈ dom ( iEdg ‘ 𝑔 ) ∣ 𝑢 ∈ ( ( iEdg ‘ 𝑔 ) ‘ 𝑥 ) } ) +𝑒 ( ♯ ‘ { 𝑥 ∈ dom ( iEdg ‘ 𝑔 ) ∣ ( ( iEdg ‘ 𝑔 ) ‘ 𝑥 ) = { 𝑢 } } ) ) ) |
| 20 | fveq2 | ⊢ ( 𝑔 = 𝐺 → ( Vtx ‘ 𝑔 ) = ( Vtx ‘ 𝐺 ) ) | |
| 21 | 20 1 | eqtr4di | ⊢ ( 𝑔 = 𝐺 → ( Vtx ‘ 𝑔 ) = 𝑉 ) |
| 22 | fveq2 | ⊢ ( 𝑔 = 𝐺 → ( iEdg ‘ 𝑔 ) = ( iEdg ‘ 𝐺 ) ) | |
| 23 | 22 | dmeqd | ⊢ ( 𝑔 = 𝐺 → dom ( iEdg ‘ 𝑔 ) = dom ( iEdg ‘ 𝐺 ) ) |
| 24 | 2 | dmeqi | ⊢ dom 𝐼 = dom ( iEdg ‘ 𝐺 ) |
| 25 | 3 24 | eqtri | ⊢ 𝐴 = dom ( iEdg ‘ 𝐺 ) |
| 26 | 23 25 | eqtr4di | ⊢ ( 𝑔 = 𝐺 → dom ( iEdg ‘ 𝑔 ) = 𝐴 ) |
| 27 | 22 2 | eqtr4di | ⊢ ( 𝑔 = 𝐺 → ( iEdg ‘ 𝑔 ) = 𝐼 ) |
| 28 | 27 | fveq1d | ⊢ ( 𝑔 = 𝐺 → ( ( iEdg ‘ 𝑔 ) ‘ 𝑥 ) = ( 𝐼 ‘ 𝑥 ) ) |
| 29 | 28 | eleq2d | ⊢ ( 𝑔 = 𝐺 → ( 𝑢 ∈ ( ( iEdg ‘ 𝑔 ) ‘ 𝑥 ) ↔ 𝑢 ∈ ( 𝐼 ‘ 𝑥 ) ) ) |
| 30 | 26 29 | rabeqbidv | ⊢ ( 𝑔 = 𝐺 → { 𝑥 ∈ dom ( iEdg ‘ 𝑔 ) ∣ 𝑢 ∈ ( ( iEdg ‘ 𝑔 ) ‘ 𝑥 ) } = { 𝑥 ∈ 𝐴 ∣ 𝑢 ∈ ( 𝐼 ‘ 𝑥 ) } ) |
| 31 | 30 | fveq2d | ⊢ ( 𝑔 = 𝐺 → ( ♯ ‘ { 𝑥 ∈ dom ( iEdg ‘ 𝑔 ) ∣ 𝑢 ∈ ( ( iEdg ‘ 𝑔 ) ‘ 𝑥 ) } ) = ( ♯ ‘ { 𝑥 ∈ 𝐴 ∣ 𝑢 ∈ ( 𝐼 ‘ 𝑥 ) } ) ) |
| 32 | 28 | eqeq1d | ⊢ ( 𝑔 = 𝐺 → ( ( ( iEdg ‘ 𝑔 ) ‘ 𝑥 ) = { 𝑢 } ↔ ( 𝐼 ‘ 𝑥 ) = { 𝑢 } ) ) |
| 33 | 26 32 | rabeqbidv | ⊢ ( 𝑔 = 𝐺 → { 𝑥 ∈ dom ( iEdg ‘ 𝑔 ) ∣ ( ( iEdg ‘ 𝑔 ) ‘ 𝑥 ) = { 𝑢 } } = { 𝑥 ∈ 𝐴 ∣ ( 𝐼 ‘ 𝑥 ) = { 𝑢 } } ) |
| 34 | 33 | fveq2d | ⊢ ( 𝑔 = 𝐺 → ( ♯ ‘ { 𝑥 ∈ dom ( iEdg ‘ 𝑔 ) ∣ ( ( iEdg ‘ 𝑔 ) ‘ 𝑥 ) = { 𝑢 } } ) = ( ♯ ‘ { 𝑥 ∈ 𝐴 ∣ ( 𝐼 ‘ 𝑥 ) = { 𝑢 } } ) ) |
| 35 | 31 34 | oveq12d | ⊢ ( 𝑔 = 𝐺 → ( ( ♯ ‘ { 𝑥 ∈ dom ( iEdg ‘ 𝑔 ) ∣ 𝑢 ∈ ( ( iEdg ‘ 𝑔 ) ‘ 𝑥 ) } ) +𝑒 ( ♯ ‘ { 𝑥 ∈ dom ( iEdg ‘ 𝑔 ) ∣ ( ( iEdg ‘ 𝑔 ) ‘ 𝑥 ) = { 𝑢 } } ) ) = ( ( ♯ ‘ { 𝑥 ∈ 𝐴 ∣ 𝑢 ∈ ( 𝐼 ‘ 𝑥 ) } ) +𝑒 ( ♯ ‘ { 𝑥 ∈ 𝐴 ∣ ( 𝐼 ‘ 𝑥 ) = { 𝑢 } } ) ) ) |
| 36 | 21 35 | mpteq12dv | ⊢ ( 𝑔 = 𝐺 → ( 𝑢 ∈ ( Vtx ‘ 𝑔 ) ↦ ( ( ♯ ‘ { 𝑥 ∈ dom ( iEdg ‘ 𝑔 ) ∣ 𝑢 ∈ ( ( iEdg ‘ 𝑔 ) ‘ 𝑥 ) } ) +𝑒 ( ♯ ‘ { 𝑥 ∈ dom ( iEdg ‘ 𝑔 ) ∣ ( ( iEdg ‘ 𝑔 ) ‘ 𝑥 ) = { 𝑢 } } ) ) ) = ( 𝑢 ∈ 𝑉 ↦ ( ( ♯ ‘ { 𝑥 ∈ 𝐴 ∣ 𝑢 ∈ ( 𝐼 ‘ 𝑥 ) } ) +𝑒 ( ♯ ‘ { 𝑥 ∈ 𝐴 ∣ ( 𝐼 ‘ 𝑥 ) = { 𝑢 } } ) ) ) ) |
| 37 | 36 | adantl | ⊢ ( ( 𝐺 ∈ 𝑊 ∧ 𝑔 = 𝐺 ) → ( 𝑢 ∈ ( Vtx ‘ 𝑔 ) ↦ ( ( ♯ ‘ { 𝑥 ∈ dom ( iEdg ‘ 𝑔 ) ∣ 𝑢 ∈ ( ( iEdg ‘ 𝑔 ) ‘ 𝑥 ) } ) +𝑒 ( ♯ ‘ { 𝑥 ∈ dom ( iEdg ‘ 𝑔 ) ∣ ( ( iEdg ‘ 𝑔 ) ‘ 𝑥 ) = { 𝑢 } } ) ) ) = ( 𝑢 ∈ 𝑉 ↦ ( ( ♯ ‘ { 𝑥 ∈ 𝐴 ∣ 𝑢 ∈ ( 𝐼 ‘ 𝑥 ) } ) +𝑒 ( ♯ ‘ { 𝑥 ∈ 𝐴 ∣ ( 𝐼 ‘ 𝑥 ) = { 𝑢 } } ) ) ) ) |
| 38 | 19 37 | eqtrid | ⊢ ( ( 𝐺 ∈ 𝑊 ∧ 𝑔 = 𝐺 ) → ⦋ ( Vtx ‘ 𝑔 ) / 𝑣 ⦌ ⦋ ( iEdg ‘ 𝑔 ) / 𝑒 ⦌ ( 𝑢 ∈ 𝑣 ↦ ( ( ♯ ‘ { 𝑥 ∈ dom 𝑒 ∣ 𝑢 ∈ ( 𝑒 ‘ 𝑥 ) } ) +𝑒 ( ♯ ‘ { 𝑥 ∈ dom 𝑒 ∣ ( 𝑒 ‘ 𝑥 ) = { 𝑢 } } ) ) ) = ( 𝑢 ∈ 𝑉 ↦ ( ( ♯ ‘ { 𝑥 ∈ 𝐴 ∣ 𝑢 ∈ ( 𝐼 ‘ 𝑥 ) } ) +𝑒 ( ♯ ‘ { 𝑥 ∈ 𝐴 ∣ ( 𝐼 ‘ 𝑥 ) = { 𝑢 } } ) ) ) ) |
| 39 | elex | ⊢ ( 𝐺 ∈ 𝑊 → 𝐺 ∈ V ) | |
| 40 | 1 | fvexi | ⊢ 𝑉 ∈ V |
| 41 | mptexg | ⊢ ( 𝑉 ∈ V → ( 𝑢 ∈ 𝑉 ↦ ( ( ♯ ‘ { 𝑥 ∈ 𝐴 ∣ 𝑢 ∈ ( 𝐼 ‘ 𝑥 ) } ) +𝑒 ( ♯ ‘ { 𝑥 ∈ 𝐴 ∣ ( 𝐼 ‘ 𝑥 ) = { 𝑢 } } ) ) ) ∈ V ) | |
| 42 | 40 41 | mp1i | ⊢ ( 𝐺 ∈ 𝑊 → ( 𝑢 ∈ 𝑉 ↦ ( ( ♯ ‘ { 𝑥 ∈ 𝐴 ∣ 𝑢 ∈ ( 𝐼 ‘ 𝑥 ) } ) +𝑒 ( ♯ ‘ { 𝑥 ∈ 𝐴 ∣ ( 𝐼 ‘ 𝑥 ) = { 𝑢 } } ) ) ) ∈ V ) |
| 43 | 4 38 39 42 | fvmptd2 | ⊢ ( 𝐺 ∈ 𝑊 → ( VtxDeg ‘ 𝐺 ) = ( 𝑢 ∈ 𝑉 ↦ ( ( ♯ ‘ { 𝑥 ∈ 𝐴 ∣ 𝑢 ∈ ( 𝐼 ‘ 𝑥 ) } ) +𝑒 ( ♯ ‘ { 𝑥 ∈ 𝐴 ∣ ( 𝐼 ‘ 𝑥 ) = { 𝑢 } } ) ) ) ) |