This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The value of the vertex degree function. (Contributed by Mario Carneiro, 12-Mar-2015) (Revised by Alexander van der Vekens, 20-Dec-2017) (Revised by AV, 9-Dec-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | vtxdgfval.v | |- V = ( Vtx ` G ) |
|
| vtxdgfval.i | |- I = ( iEdg ` G ) |
||
| vtxdgfval.a | |- A = dom I |
||
| Assertion | vtxdgfval | |- ( G e. W -> ( VtxDeg ` G ) = ( u e. V |-> ( ( # ` { x e. A | u e. ( I ` x ) } ) +e ( # ` { x e. A | ( I ` x ) = { u } } ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vtxdgfval.v | |- V = ( Vtx ` G ) |
|
| 2 | vtxdgfval.i | |- I = ( iEdg ` G ) |
|
| 3 | vtxdgfval.a | |- A = dom I |
|
| 4 | df-vtxdg | |- VtxDeg = ( g e. _V |-> [_ ( Vtx ` g ) / v ]_ [_ ( iEdg ` g ) / e ]_ ( u e. v |-> ( ( # ` { x e. dom e | u e. ( e ` x ) } ) +e ( # ` { x e. dom e | ( e ` x ) = { u } } ) ) ) ) |
|
| 5 | fvex | |- ( Vtx ` g ) e. _V |
|
| 6 | fvex | |- ( iEdg ` g ) e. _V |
|
| 7 | simpl | |- ( ( v = ( Vtx ` g ) /\ e = ( iEdg ` g ) ) -> v = ( Vtx ` g ) ) |
|
| 8 | dmeq | |- ( e = ( iEdg ` g ) -> dom e = dom ( iEdg ` g ) ) |
|
| 9 | fveq1 | |- ( e = ( iEdg ` g ) -> ( e ` x ) = ( ( iEdg ` g ) ` x ) ) |
|
| 10 | 9 | eleq2d | |- ( e = ( iEdg ` g ) -> ( u e. ( e ` x ) <-> u e. ( ( iEdg ` g ) ` x ) ) ) |
| 11 | 8 10 | rabeqbidv | |- ( e = ( iEdg ` g ) -> { x e. dom e | u e. ( e ` x ) } = { x e. dom ( iEdg ` g ) | u e. ( ( iEdg ` g ) ` x ) } ) |
| 12 | 11 | fveq2d | |- ( e = ( iEdg ` g ) -> ( # ` { x e. dom e | u e. ( e ` x ) } ) = ( # ` { x e. dom ( iEdg ` g ) | u e. ( ( iEdg ` g ) ` x ) } ) ) |
| 13 | 9 | eqeq1d | |- ( e = ( iEdg ` g ) -> ( ( e ` x ) = { u } <-> ( ( iEdg ` g ) ` x ) = { u } ) ) |
| 14 | 8 13 | rabeqbidv | |- ( e = ( iEdg ` g ) -> { x e. dom e | ( e ` x ) = { u } } = { x e. dom ( iEdg ` g ) | ( ( iEdg ` g ) ` x ) = { u } } ) |
| 15 | 14 | fveq2d | |- ( e = ( iEdg ` g ) -> ( # ` { x e. dom e | ( e ` x ) = { u } } ) = ( # ` { x e. dom ( iEdg ` g ) | ( ( iEdg ` g ) ` x ) = { u } } ) ) |
| 16 | 12 15 | oveq12d | |- ( e = ( iEdg ` g ) -> ( ( # ` { x e. dom e | u e. ( e ` x ) } ) +e ( # ` { x e. dom e | ( e ` x ) = { u } } ) ) = ( ( # ` { x e. dom ( iEdg ` g ) | u e. ( ( iEdg ` g ) ` x ) } ) +e ( # ` { x e. dom ( iEdg ` g ) | ( ( iEdg ` g ) ` x ) = { u } } ) ) ) |
| 17 | 16 | adantl | |- ( ( v = ( Vtx ` g ) /\ e = ( iEdg ` g ) ) -> ( ( # ` { x e. dom e | u e. ( e ` x ) } ) +e ( # ` { x e. dom e | ( e ` x ) = { u } } ) ) = ( ( # ` { x e. dom ( iEdg ` g ) | u e. ( ( iEdg ` g ) ` x ) } ) +e ( # ` { x e. dom ( iEdg ` g ) | ( ( iEdg ` g ) ` x ) = { u } } ) ) ) |
| 18 | 7 17 | mpteq12dv | |- ( ( v = ( Vtx ` g ) /\ e = ( iEdg ` g ) ) -> ( u e. v |-> ( ( # ` { x e. dom e | u e. ( e ` x ) } ) +e ( # ` { x e. dom e | ( e ` x ) = { u } } ) ) ) = ( u e. ( Vtx ` g ) |-> ( ( # ` { x e. dom ( iEdg ` g ) | u e. ( ( iEdg ` g ) ` x ) } ) +e ( # ` { x e. dom ( iEdg ` g ) | ( ( iEdg ` g ) ` x ) = { u } } ) ) ) ) |
| 19 | 5 6 18 | csbie2 | |- [_ ( Vtx ` g ) / v ]_ [_ ( iEdg ` g ) / e ]_ ( u e. v |-> ( ( # ` { x e. dom e | u e. ( e ` x ) } ) +e ( # ` { x e. dom e | ( e ` x ) = { u } } ) ) ) = ( u e. ( Vtx ` g ) |-> ( ( # ` { x e. dom ( iEdg ` g ) | u e. ( ( iEdg ` g ) ` x ) } ) +e ( # ` { x e. dom ( iEdg ` g ) | ( ( iEdg ` g ) ` x ) = { u } } ) ) ) |
| 20 | fveq2 | |- ( g = G -> ( Vtx ` g ) = ( Vtx ` G ) ) |
|
| 21 | 20 1 | eqtr4di | |- ( g = G -> ( Vtx ` g ) = V ) |
| 22 | fveq2 | |- ( g = G -> ( iEdg ` g ) = ( iEdg ` G ) ) |
|
| 23 | 22 | dmeqd | |- ( g = G -> dom ( iEdg ` g ) = dom ( iEdg ` G ) ) |
| 24 | 2 | dmeqi | |- dom I = dom ( iEdg ` G ) |
| 25 | 3 24 | eqtri | |- A = dom ( iEdg ` G ) |
| 26 | 23 25 | eqtr4di | |- ( g = G -> dom ( iEdg ` g ) = A ) |
| 27 | 22 2 | eqtr4di | |- ( g = G -> ( iEdg ` g ) = I ) |
| 28 | 27 | fveq1d | |- ( g = G -> ( ( iEdg ` g ) ` x ) = ( I ` x ) ) |
| 29 | 28 | eleq2d | |- ( g = G -> ( u e. ( ( iEdg ` g ) ` x ) <-> u e. ( I ` x ) ) ) |
| 30 | 26 29 | rabeqbidv | |- ( g = G -> { x e. dom ( iEdg ` g ) | u e. ( ( iEdg ` g ) ` x ) } = { x e. A | u e. ( I ` x ) } ) |
| 31 | 30 | fveq2d | |- ( g = G -> ( # ` { x e. dom ( iEdg ` g ) | u e. ( ( iEdg ` g ) ` x ) } ) = ( # ` { x e. A | u e. ( I ` x ) } ) ) |
| 32 | 28 | eqeq1d | |- ( g = G -> ( ( ( iEdg ` g ) ` x ) = { u } <-> ( I ` x ) = { u } ) ) |
| 33 | 26 32 | rabeqbidv | |- ( g = G -> { x e. dom ( iEdg ` g ) | ( ( iEdg ` g ) ` x ) = { u } } = { x e. A | ( I ` x ) = { u } } ) |
| 34 | 33 | fveq2d | |- ( g = G -> ( # ` { x e. dom ( iEdg ` g ) | ( ( iEdg ` g ) ` x ) = { u } } ) = ( # ` { x e. A | ( I ` x ) = { u } } ) ) |
| 35 | 31 34 | oveq12d | |- ( g = G -> ( ( # ` { x e. dom ( iEdg ` g ) | u e. ( ( iEdg ` g ) ` x ) } ) +e ( # ` { x e. dom ( iEdg ` g ) | ( ( iEdg ` g ) ` x ) = { u } } ) ) = ( ( # ` { x e. A | u e. ( I ` x ) } ) +e ( # ` { x e. A | ( I ` x ) = { u } } ) ) ) |
| 36 | 21 35 | mpteq12dv | |- ( g = G -> ( u e. ( Vtx ` g ) |-> ( ( # ` { x e. dom ( iEdg ` g ) | u e. ( ( iEdg ` g ) ` x ) } ) +e ( # ` { x e. dom ( iEdg ` g ) | ( ( iEdg ` g ) ` x ) = { u } } ) ) ) = ( u e. V |-> ( ( # ` { x e. A | u e. ( I ` x ) } ) +e ( # ` { x e. A | ( I ` x ) = { u } } ) ) ) ) |
| 37 | 36 | adantl | |- ( ( G e. W /\ g = G ) -> ( u e. ( Vtx ` g ) |-> ( ( # ` { x e. dom ( iEdg ` g ) | u e. ( ( iEdg ` g ) ` x ) } ) +e ( # ` { x e. dom ( iEdg ` g ) | ( ( iEdg ` g ) ` x ) = { u } } ) ) ) = ( u e. V |-> ( ( # ` { x e. A | u e. ( I ` x ) } ) +e ( # ` { x e. A | ( I ` x ) = { u } } ) ) ) ) |
| 38 | 19 37 | eqtrid | |- ( ( G e. W /\ g = G ) -> [_ ( Vtx ` g ) / v ]_ [_ ( iEdg ` g ) / e ]_ ( u e. v |-> ( ( # ` { x e. dom e | u e. ( e ` x ) } ) +e ( # ` { x e. dom e | ( e ` x ) = { u } } ) ) ) = ( u e. V |-> ( ( # ` { x e. A | u e. ( I ` x ) } ) +e ( # ` { x e. A | ( I ` x ) = { u } } ) ) ) ) |
| 39 | elex | |- ( G e. W -> G e. _V ) |
|
| 40 | 1 | fvexi | |- V e. _V |
| 41 | mptexg | |- ( V e. _V -> ( u e. V |-> ( ( # ` { x e. A | u e. ( I ` x ) } ) +e ( # ` { x e. A | ( I ` x ) = { u } } ) ) ) e. _V ) |
|
| 42 | 40 41 | mp1i | |- ( G e. W -> ( u e. V |-> ( ( # ` { x e. A | u e. ( I ` x ) } ) +e ( # ` { x e. A | ( I ` x ) = { u } } ) ) ) e. _V ) |
| 43 | 4 38 39 42 | fvmptd2 | |- ( G e. W -> ( VtxDeg ` G ) = ( u e. V |-> ( ( # ` { x e. A | u e. ( I ` x ) } ) +e ( # ` { x e. A | ( I ` x ) = { u } } ) ) ) ) |