This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Equality theorem for the vertex degree: If two graphs are structurally equal, their vertex degree functions are equal. (Contributed by AV, 26-Feb-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | vtxdeqd.g | ⊢ ( 𝜑 → 𝐺 ∈ 𝑋 ) | |
| vtxdeqd.h | ⊢ ( 𝜑 → 𝐻 ∈ 𝑌 ) | ||
| vtxdeqd.v | ⊢ ( 𝜑 → ( Vtx ‘ 𝐻 ) = ( Vtx ‘ 𝐺 ) ) | ||
| vtxdeqd.i | ⊢ ( 𝜑 → ( iEdg ‘ 𝐻 ) = ( iEdg ‘ 𝐺 ) ) | ||
| Assertion | vtxdeqd | ⊢ ( 𝜑 → ( VtxDeg ‘ 𝐻 ) = ( VtxDeg ‘ 𝐺 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vtxdeqd.g | ⊢ ( 𝜑 → 𝐺 ∈ 𝑋 ) | |
| 2 | vtxdeqd.h | ⊢ ( 𝜑 → 𝐻 ∈ 𝑌 ) | |
| 3 | vtxdeqd.v | ⊢ ( 𝜑 → ( Vtx ‘ 𝐻 ) = ( Vtx ‘ 𝐺 ) ) | |
| 4 | vtxdeqd.i | ⊢ ( 𝜑 → ( iEdg ‘ 𝐻 ) = ( iEdg ‘ 𝐺 ) ) | |
| 5 | 4 | dmeqd | ⊢ ( 𝜑 → dom ( iEdg ‘ 𝐻 ) = dom ( iEdg ‘ 𝐺 ) ) |
| 6 | 4 | fveq1d | ⊢ ( 𝜑 → ( ( iEdg ‘ 𝐻 ) ‘ 𝑥 ) = ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ) |
| 7 | 6 | eleq2d | ⊢ ( 𝜑 → ( 𝑢 ∈ ( ( iEdg ‘ 𝐻 ) ‘ 𝑥 ) ↔ 𝑢 ∈ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ) ) |
| 8 | 5 7 | rabeqbidv | ⊢ ( 𝜑 → { 𝑥 ∈ dom ( iEdg ‘ 𝐻 ) ∣ 𝑢 ∈ ( ( iEdg ‘ 𝐻 ) ‘ 𝑥 ) } = { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ 𝑢 ∈ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) } ) |
| 9 | 8 | fveq2d | ⊢ ( 𝜑 → ( ♯ ‘ { 𝑥 ∈ dom ( iEdg ‘ 𝐻 ) ∣ 𝑢 ∈ ( ( iEdg ‘ 𝐻 ) ‘ 𝑥 ) } ) = ( ♯ ‘ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ 𝑢 ∈ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) } ) ) |
| 10 | 6 | eqeq1d | ⊢ ( 𝜑 → ( ( ( iEdg ‘ 𝐻 ) ‘ 𝑥 ) = { 𝑢 } ↔ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) = { 𝑢 } ) ) |
| 11 | 5 10 | rabeqbidv | ⊢ ( 𝜑 → { 𝑥 ∈ dom ( iEdg ‘ 𝐻 ) ∣ ( ( iEdg ‘ 𝐻 ) ‘ 𝑥 ) = { 𝑢 } } = { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) = { 𝑢 } } ) |
| 12 | 11 | fveq2d | ⊢ ( 𝜑 → ( ♯ ‘ { 𝑥 ∈ dom ( iEdg ‘ 𝐻 ) ∣ ( ( iEdg ‘ 𝐻 ) ‘ 𝑥 ) = { 𝑢 } } ) = ( ♯ ‘ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) = { 𝑢 } } ) ) |
| 13 | 9 12 | oveq12d | ⊢ ( 𝜑 → ( ( ♯ ‘ { 𝑥 ∈ dom ( iEdg ‘ 𝐻 ) ∣ 𝑢 ∈ ( ( iEdg ‘ 𝐻 ) ‘ 𝑥 ) } ) +𝑒 ( ♯ ‘ { 𝑥 ∈ dom ( iEdg ‘ 𝐻 ) ∣ ( ( iEdg ‘ 𝐻 ) ‘ 𝑥 ) = { 𝑢 } } ) ) = ( ( ♯ ‘ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ 𝑢 ∈ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) } ) +𝑒 ( ♯ ‘ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) = { 𝑢 } } ) ) ) |
| 14 | 3 13 | mpteq12dv | ⊢ ( 𝜑 → ( 𝑢 ∈ ( Vtx ‘ 𝐻 ) ↦ ( ( ♯ ‘ { 𝑥 ∈ dom ( iEdg ‘ 𝐻 ) ∣ 𝑢 ∈ ( ( iEdg ‘ 𝐻 ) ‘ 𝑥 ) } ) +𝑒 ( ♯ ‘ { 𝑥 ∈ dom ( iEdg ‘ 𝐻 ) ∣ ( ( iEdg ‘ 𝐻 ) ‘ 𝑥 ) = { 𝑢 } } ) ) ) = ( 𝑢 ∈ ( Vtx ‘ 𝐺 ) ↦ ( ( ♯ ‘ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ 𝑢 ∈ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) } ) +𝑒 ( ♯ ‘ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) = { 𝑢 } } ) ) ) ) |
| 15 | eqid | ⊢ ( Vtx ‘ 𝐻 ) = ( Vtx ‘ 𝐻 ) | |
| 16 | eqid | ⊢ ( iEdg ‘ 𝐻 ) = ( iEdg ‘ 𝐻 ) | |
| 17 | eqid | ⊢ dom ( iEdg ‘ 𝐻 ) = dom ( iEdg ‘ 𝐻 ) | |
| 18 | 15 16 17 | vtxdgfval | ⊢ ( 𝐻 ∈ 𝑌 → ( VtxDeg ‘ 𝐻 ) = ( 𝑢 ∈ ( Vtx ‘ 𝐻 ) ↦ ( ( ♯ ‘ { 𝑥 ∈ dom ( iEdg ‘ 𝐻 ) ∣ 𝑢 ∈ ( ( iEdg ‘ 𝐻 ) ‘ 𝑥 ) } ) +𝑒 ( ♯ ‘ { 𝑥 ∈ dom ( iEdg ‘ 𝐻 ) ∣ ( ( iEdg ‘ 𝐻 ) ‘ 𝑥 ) = { 𝑢 } } ) ) ) ) |
| 19 | 2 18 | syl | ⊢ ( 𝜑 → ( VtxDeg ‘ 𝐻 ) = ( 𝑢 ∈ ( Vtx ‘ 𝐻 ) ↦ ( ( ♯ ‘ { 𝑥 ∈ dom ( iEdg ‘ 𝐻 ) ∣ 𝑢 ∈ ( ( iEdg ‘ 𝐻 ) ‘ 𝑥 ) } ) +𝑒 ( ♯ ‘ { 𝑥 ∈ dom ( iEdg ‘ 𝐻 ) ∣ ( ( iEdg ‘ 𝐻 ) ‘ 𝑥 ) = { 𝑢 } } ) ) ) ) |
| 20 | eqid | ⊢ ( Vtx ‘ 𝐺 ) = ( Vtx ‘ 𝐺 ) | |
| 21 | eqid | ⊢ ( iEdg ‘ 𝐺 ) = ( iEdg ‘ 𝐺 ) | |
| 22 | eqid | ⊢ dom ( iEdg ‘ 𝐺 ) = dom ( iEdg ‘ 𝐺 ) | |
| 23 | 20 21 22 | vtxdgfval | ⊢ ( 𝐺 ∈ 𝑋 → ( VtxDeg ‘ 𝐺 ) = ( 𝑢 ∈ ( Vtx ‘ 𝐺 ) ↦ ( ( ♯ ‘ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ 𝑢 ∈ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) } ) +𝑒 ( ♯ ‘ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) = { 𝑢 } } ) ) ) ) |
| 24 | 1 23 | syl | ⊢ ( 𝜑 → ( VtxDeg ‘ 𝐺 ) = ( 𝑢 ∈ ( Vtx ‘ 𝐺 ) ↦ ( ( ♯ ‘ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ 𝑢 ∈ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) } ) +𝑒 ( ♯ ‘ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) = { 𝑢 } } ) ) ) ) |
| 25 | 14 19 24 | 3eqtr4d | ⊢ ( 𝜑 → ( VtxDeg ‘ 𝐻 ) = ( VtxDeg ‘ 𝐺 ) ) |