This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Equality theorem for the vertex degree: If two graphs are structurally equal, their vertex degree functions are equal. (Contributed by AV, 26-Feb-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | vtxdeqd.g | |- ( ph -> G e. X ) |
|
| vtxdeqd.h | |- ( ph -> H e. Y ) |
||
| vtxdeqd.v | |- ( ph -> ( Vtx ` H ) = ( Vtx ` G ) ) |
||
| vtxdeqd.i | |- ( ph -> ( iEdg ` H ) = ( iEdg ` G ) ) |
||
| Assertion | vtxdeqd | |- ( ph -> ( VtxDeg ` H ) = ( VtxDeg ` G ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vtxdeqd.g | |- ( ph -> G e. X ) |
|
| 2 | vtxdeqd.h | |- ( ph -> H e. Y ) |
|
| 3 | vtxdeqd.v | |- ( ph -> ( Vtx ` H ) = ( Vtx ` G ) ) |
|
| 4 | vtxdeqd.i | |- ( ph -> ( iEdg ` H ) = ( iEdg ` G ) ) |
|
| 5 | 4 | dmeqd | |- ( ph -> dom ( iEdg ` H ) = dom ( iEdg ` G ) ) |
| 6 | 4 | fveq1d | |- ( ph -> ( ( iEdg ` H ) ` x ) = ( ( iEdg ` G ) ` x ) ) |
| 7 | 6 | eleq2d | |- ( ph -> ( u e. ( ( iEdg ` H ) ` x ) <-> u e. ( ( iEdg ` G ) ` x ) ) ) |
| 8 | 5 7 | rabeqbidv | |- ( ph -> { x e. dom ( iEdg ` H ) | u e. ( ( iEdg ` H ) ` x ) } = { x e. dom ( iEdg ` G ) | u e. ( ( iEdg ` G ) ` x ) } ) |
| 9 | 8 | fveq2d | |- ( ph -> ( # ` { x e. dom ( iEdg ` H ) | u e. ( ( iEdg ` H ) ` x ) } ) = ( # ` { x e. dom ( iEdg ` G ) | u e. ( ( iEdg ` G ) ` x ) } ) ) |
| 10 | 6 | eqeq1d | |- ( ph -> ( ( ( iEdg ` H ) ` x ) = { u } <-> ( ( iEdg ` G ) ` x ) = { u } ) ) |
| 11 | 5 10 | rabeqbidv | |- ( ph -> { x e. dom ( iEdg ` H ) | ( ( iEdg ` H ) ` x ) = { u } } = { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) = { u } } ) |
| 12 | 11 | fveq2d | |- ( ph -> ( # ` { x e. dom ( iEdg ` H ) | ( ( iEdg ` H ) ` x ) = { u } } ) = ( # ` { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) = { u } } ) ) |
| 13 | 9 12 | oveq12d | |- ( ph -> ( ( # ` { x e. dom ( iEdg ` H ) | u e. ( ( iEdg ` H ) ` x ) } ) +e ( # ` { x e. dom ( iEdg ` H ) | ( ( iEdg ` H ) ` x ) = { u } } ) ) = ( ( # ` { x e. dom ( iEdg ` G ) | u e. ( ( iEdg ` G ) ` x ) } ) +e ( # ` { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) = { u } } ) ) ) |
| 14 | 3 13 | mpteq12dv | |- ( ph -> ( u e. ( Vtx ` H ) |-> ( ( # ` { x e. dom ( iEdg ` H ) | u e. ( ( iEdg ` H ) ` x ) } ) +e ( # ` { x e. dom ( iEdg ` H ) | ( ( iEdg ` H ) ` x ) = { u } } ) ) ) = ( u e. ( Vtx ` G ) |-> ( ( # ` { x e. dom ( iEdg ` G ) | u e. ( ( iEdg ` G ) ` x ) } ) +e ( # ` { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) = { u } } ) ) ) ) |
| 15 | eqid | |- ( Vtx ` H ) = ( Vtx ` H ) |
|
| 16 | eqid | |- ( iEdg ` H ) = ( iEdg ` H ) |
|
| 17 | eqid | |- dom ( iEdg ` H ) = dom ( iEdg ` H ) |
|
| 18 | 15 16 17 | vtxdgfval | |- ( H e. Y -> ( VtxDeg ` H ) = ( u e. ( Vtx ` H ) |-> ( ( # ` { x e. dom ( iEdg ` H ) | u e. ( ( iEdg ` H ) ` x ) } ) +e ( # ` { x e. dom ( iEdg ` H ) | ( ( iEdg ` H ) ` x ) = { u } } ) ) ) ) |
| 19 | 2 18 | syl | |- ( ph -> ( VtxDeg ` H ) = ( u e. ( Vtx ` H ) |-> ( ( # ` { x e. dom ( iEdg ` H ) | u e. ( ( iEdg ` H ) ` x ) } ) +e ( # ` { x e. dom ( iEdg ` H ) | ( ( iEdg ` H ) ` x ) = { u } } ) ) ) ) |
| 20 | eqid | |- ( Vtx ` G ) = ( Vtx ` G ) |
|
| 21 | eqid | |- ( iEdg ` G ) = ( iEdg ` G ) |
|
| 22 | eqid | |- dom ( iEdg ` G ) = dom ( iEdg ` G ) |
|
| 23 | 20 21 22 | vtxdgfval | |- ( G e. X -> ( VtxDeg ` G ) = ( u e. ( Vtx ` G ) |-> ( ( # ` { x e. dom ( iEdg ` G ) | u e. ( ( iEdg ` G ) ` x ) } ) +e ( # ` { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) = { u } } ) ) ) ) |
| 24 | 1 23 | syl | |- ( ph -> ( VtxDeg ` G ) = ( u e. ( Vtx ` G ) |-> ( ( # ` { x e. dom ( iEdg ` G ) | u e. ( ( iEdg ` G ) ` x ) } ) +e ( # ` { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) = { u } } ) ) ) ) |
| 25 | 14 19 24 | 3eqtr4d | |- ( ph -> ( VtxDeg ` H ) = ( VtxDeg ` G ) ) |