This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The degree of a vertex in an empty hypergraph is zero, because there are no edges. Analogue of vtxdg0e . (Contributed by AV, 15-Dec-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | vtxduhgr0e.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| vtxduhgr0e.e | ⊢ 𝐸 = ( Edg ‘ 𝐺 ) | ||
| Assertion | vtxduhgr0e | ⊢ ( ( 𝐺 ∈ UHGraph ∧ 𝑈 ∈ 𝑉 ∧ 𝐸 = ∅ ) → ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑈 ) = 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vtxduhgr0e.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| 2 | vtxduhgr0e.e | ⊢ 𝐸 = ( Edg ‘ 𝐺 ) | |
| 3 | eqid | ⊢ ( iEdg ‘ 𝐺 ) = ( iEdg ‘ 𝐺 ) | |
| 4 | 3 | uhgrfun | ⊢ ( 𝐺 ∈ UHGraph → Fun ( iEdg ‘ 𝐺 ) ) |
| 5 | 3 2 | edg0iedg0 | ⊢ ( Fun ( iEdg ‘ 𝐺 ) → ( 𝐸 = ∅ ↔ ( iEdg ‘ 𝐺 ) = ∅ ) ) |
| 6 | 4 5 | syl | ⊢ ( 𝐺 ∈ UHGraph → ( 𝐸 = ∅ ↔ ( iEdg ‘ 𝐺 ) = ∅ ) ) |
| 7 | 6 | adantr | ⊢ ( ( 𝐺 ∈ UHGraph ∧ 𝑈 ∈ 𝑉 ) → ( 𝐸 = ∅ ↔ ( iEdg ‘ 𝐺 ) = ∅ ) ) |
| 8 | 1 3 | vtxdg0e | ⊢ ( ( 𝑈 ∈ 𝑉 ∧ ( iEdg ‘ 𝐺 ) = ∅ ) → ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑈 ) = 0 ) |
| 9 | 8 | ex | ⊢ ( 𝑈 ∈ 𝑉 → ( ( iEdg ‘ 𝐺 ) = ∅ → ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑈 ) = 0 ) ) |
| 10 | 9 | adantl | ⊢ ( ( 𝐺 ∈ UHGraph ∧ 𝑈 ∈ 𝑉 ) → ( ( iEdg ‘ 𝐺 ) = ∅ → ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑈 ) = 0 ) ) |
| 11 | 7 10 | sylbid | ⊢ ( ( 𝐺 ∈ UHGraph ∧ 𝑈 ∈ 𝑉 ) → ( 𝐸 = ∅ → ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑈 ) = 0 ) ) |
| 12 | 11 | 3impia | ⊢ ( ( 𝐺 ∈ UHGraph ∧ 𝑈 ∈ 𝑉 ∧ 𝐸 = ∅ ) → ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑈 ) = 0 ) |