This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A vertex has degree 0 iff there is no edge incident with the vertex. (Contributed by AV, 24-Dec-2020) (Revised by AV, 22-Mar-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | vtxd0nedgb.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| vtxd0nedgb.i | ⊢ 𝐼 = ( iEdg ‘ 𝐺 ) | ||
| vtxd0nedgb.d | ⊢ 𝐷 = ( VtxDeg ‘ 𝐺 ) | ||
| Assertion | vtxd0nedgb | ⊢ ( 𝑈 ∈ 𝑉 → ( ( 𝐷 ‘ 𝑈 ) = 0 ↔ ¬ ∃ 𝑖 ∈ dom 𝐼 𝑈 ∈ ( 𝐼 ‘ 𝑖 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vtxd0nedgb.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| 2 | vtxd0nedgb.i | ⊢ 𝐼 = ( iEdg ‘ 𝐺 ) | |
| 3 | vtxd0nedgb.d | ⊢ 𝐷 = ( VtxDeg ‘ 𝐺 ) | |
| 4 | 3 | fveq1i | ⊢ ( 𝐷 ‘ 𝑈 ) = ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑈 ) |
| 5 | eqid | ⊢ dom 𝐼 = dom 𝐼 | |
| 6 | 1 2 5 | vtxdgval | ⊢ ( 𝑈 ∈ 𝑉 → ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑈 ) = ( ( ♯ ‘ { 𝑖 ∈ dom 𝐼 ∣ 𝑈 ∈ ( 𝐼 ‘ 𝑖 ) } ) +𝑒 ( ♯ ‘ { 𝑖 ∈ dom 𝐼 ∣ ( 𝐼 ‘ 𝑖 ) = { 𝑈 } } ) ) ) |
| 7 | 4 6 | eqtrid | ⊢ ( 𝑈 ∈ 𝑉 → ( 𝐷 ‘ 𝑈 ) = ( ( ♯ ‘ { 𝑖 ∈ dom 𝐼 ∣ 𝑈 ∈ ( 𝐼 ‘ 𝑖 ) } ) +𝑒 ( ♯ ‘ { 𝑖 ∈ dom 𝐼 ∣ ( 𝐼 ‘ 𝑖 ) = { 𝑈 } } ) ) ) |
| 8 | 7 | eqeq1d | ⊢ ( 𝑈 ∈ 𝑉 → ( ( 𝐷 ‘ 𝑈 ) = 0 ↔ ( ( ♯ ‘ { 𝑖 ∈ dom 𝐼 ∣ 𝑈 ∈ ( 𝐼 ‘ 𝑖 ) } ) +𝑒 ( ♯ ‘ { 𝑖 ∈ dom 𝐼 ∣ ( 𝐼 ‘ 𝑖 ) = { 𝑈 } } ) ) = 0 ) ) |
| 9 | 2 | fvexi | ⊢ 𝐼 ∈ V |
| 10 | 9 | dmex | ⊢ dom 𝐼 ∈ V |
| 11 | 10 | rabex | ⊢ { 𝑖 ∈ dom 𝐼 ∣ 𝑈 ∈ ( 𝐼 ‘ 𝑖 ) } ∈ V |
| 12 | hashxnn0 | ⊢ ( { 𝑖 ∈ dom 𝐼 ∣ 𝑈 ∈ ( 𝐼 ‘ 𝑖 ) } ∈ V → ( ♯ ‘ { 𝑖 ∈ dom 𝐼 ∣ 𝑈 ∈ ( 𝐼 ‘ 𝑖 ) } ) ∈ ℕ0* ) | |
| 13 | 11 12 | ax-mp | ⊢ ( ♯ ‘ { 𝑖 ∈ dom 𝐼 ∣ 𝑈 ∈ ( 𝐼 ‘ 𝑖 ) } ) ∈ ℕ0* |
| 14 | 10 | rabex | ⊢ { 𝑖 ∈ dom 𝐼 ∣ ( 𝐼 ‘ 𝑖 ) = { 𝑈 } } ∈ V |
| 15 | hashxnn0 | ⊢ ( { 𝑖 ∈ dom 𝐼 ∣ ( 𝐼 ‘ 𝑖 ) = { 𝑈 } } ∈ V → ( ♯ ‘ { 𝑖 ∈ dom 𝐼 ∣ ( 𝐼 ‘ 𝑖 ) = { 𝑈 } } ) ∈ ℕ0* ) | |
| 16 | 14 15 | ax-mp | ⊢ ( ♯ ‘ { 𝑖 ∈ dom 𝐼 ∣ ( 𝐼 ‘ 𝑖 ) = { 𝑈 } } ) ∈ ℕ0* |
| 17 | 13 16 | pm3.2i | ⊢ ( ( ♯ ‘ { 𝑖 ∈ dom 𝐼 ∣ 𝑈 ∈ ( 𝐼 ‘ 𝑖 ) } ) ∈ ℕ0* ∧ ( ♯ ‘ { 𝑖 ∈ dom 𝐼 ∣ ( 𝐼 ‘ 𝑖 ) = { 𝑈 } } ) ∈ ℕ0* ) |
| 18 | xnn0xadd0 | ⊢ ( ( ( ♯ ‘ { 𝑖 ∈ dom 𝐼 ∣ 𝑈 ∈ ( 𝐼 ‘ 𝑖 ) } ) ∈ ℕ0* ∧ ( ♯ ‘ { 𝑖 ∈ dom 𝐼 ∣ ( 𝐼 ‘ 𝑖 ) = { 𝑈 } } ) ∈ ℕ0* ) → ( ( ( ♯ ‘ { 𝑖 ∈ dom 𝐼 ∣ 𝑈 ∈ ( 𝐼 ‘ 𝑖 ) } ) +𝑒 ( ♯ ‘ { 𝑖 ∈ dom 𝐼 ∣ ( 𝐼 ‘ 𝑖 ) = { 𝑈 } } ) ) = 0 ↔ ( ( ♯ ‘ { 𝑖 ∈ dom 𝐼 ∣ 𝑈 ∈ ( 𝐼 ‘ 𝑖 ) } ) = 0 ∧ ( ♯ ‘ { 𝑖 ∈ dom 𝐼 ∣ ( 𝐼 ‘ 𝑖 ) = { 𝑈 } } ) = 0 ) ) ) | |
| 19 | 17 18 | mp1i | ⊢ ( 𝑈 ∈ 𝑉 → ( ( ( ♯ ‘ { 𝑖 ∈ dom 𝐼 ∣ 𝑈 ∈ ( 𝐼 ‘ 𝑖 ) } ) +𝑒 ( ♯ ‘ { 𝑖 ∈ dom 𝐼 ∣ ( 𝐼 ‘ 𝑖 ) = { 𝑈 } } ) ) = 0 ↔ ( ( ♯ ‘ { 𝑖 ∈ dom 𝐼 ∣ 𝑈 ∈ ( 𝐼 ‘ 𝑖 ) } ) = 0 ∧ ( ♯ ‘ { 𝑖 ∈ dom 𝐼 ∣ ( 𝐼 ‘ 𝑖 ) = { 𝑈 } } ) = 0 ) ) ) |
| 20 | hasheq0 | ⊢ ( { 𝑖 ∈ dom 𝐼 ∣ 𝑈 ∈ ( 𝐼 ‘ 𝑖 ) } ∈ V → ( ( ♯ ‘ { 𝑖 ∈ dom 𝐼 ∣ 𝑈 ∈ ( 𝐼 ‘ 𝑖 ) } ) = 0 ↔ { 𝑖 ∈ dom 𝐼 ∣ 𝑈 ∈ ( 𝐼 ‘ 𝑖 ) } = ∅ ) ) | |
| 21 | 11 20 | ax-mp | ⊢ ( ( ♯ ‘ { 𝑖 ∈ dom 𝐼 ∣ 𝑈 ∈ ( 𝐼 ‘ 𝑖 ) } ) = 0 ↔ { 𝑖 ∈ dom 𝐼 ∣ 𝑈 ∈ ( 𝐼 ‘ 𝑖 ) } = ∅ ) |
| 22 | hasheq0 | ⊢ ( { 𝑖 ∈ dom 𝐼 ∣ ( 𝐼 ‘ 𝑖 ) = { 𝑈 } } ∈ V → ( ( ♯ ‘ { 𝑖 ∈ dom 𝐼 ∣ ( 𝐼 ‘ 𝑖 ) = { 𝑈 } } ) = 0 ↔ { 𝑖 ∈ dom 𝐼 ∣ ( 𝐼 ‘ 𝑖 ) = { 𝑈 } } = ∅ ) ) | |
| 23 | 14 22 | ax-mp | ⊢ ( ( ♯ ‘ { 𝑖 ∈ dom 𝐼 ∣ ( 𝐼 ‘ 𝑖 ) = { 𝑈 } } ) = 0 ↔ { 𝑖 ∈ dom 𝐼 ∣ ( 𝐼 ‘ 𝑖 ) = { 𝑈 } } = ∅ ) |
| 24 | 21 23 | anbi12i | ⊢ ( ( ( ♯ ‘ { 𝑖 ∈ dom 𝐼 ∣ 𝑈 ∈ ( 𝐼 ‘ 𝑖 ) } ) = 0 ∧ ( ♯ ‘ { 𝑖 ∈ dom 𝐼 ∣ ( 𝐼 ‘ 𝑖 ) = { 𝑈 } } ) = 0 ) ↔ ( { 𝑖 ∈ dom 𝐼 ∣ 𝑈 ∈ ( 𝐼 ‘ 𝑖 ) } = ∅ ∧ { 𝑖 ∈ dom 𝐼 ∣ ( 𝐼 ‘ 𝑖 ) = { 𝑈 } } = ∅ ) ) |
| 25 | rabeq0 | ⊢ ( { 𝑖 ∈ dom 𝐼 ∣ 𝑈 ∈ ( 𝐼 ‘ 𝑖 ) } = ∅ ↔ ∀ 𝑖 ∈ dom 𝐼 ¬ 𝑈 ∈ ( 𝐼 ‘ 𝑖 ) ) | |
| 26 | rabeq0 | ⊢ ( { 𝑖 ∈ dom 𝐼 ∣ ( 𝐼 ‘ 𝑖 ) = { 𝑈 } } = ∅ ↔ ∀ 𝑖 ∈ dom 𝐼 ¬ ( 𝐼 ‘ 𝑖 ) = { 𝑈 } ) | |
| 27 | 25 26 | anbi12i | ⊢ ( ( { 𝑖 ∈ dom 𝐼 ∣ 𝑈 ∈ ( 𝐼 ‘ 𝑖 ) } = ∅ ∧ { 𝑖 ∈ dom 𝐼 ∣ ( 𝐼 ‘ 𝑖 ) = { 𝑈 } } = ∅ ) ↔ ( ∀ 𝑖 ∈ dom 𝐼 ¬ 𝑈 ∈ ( 𝐼 ‘ 𝑖 ) ∧ ∀ 𝑖 ∈ dom 𝐼 ¬ ( 𝐼 ‘ 𝑖 ) = { 𝑈 } ) ) |
| 28 | ralnex | ⊢ ( ∀ 𝑖 ∈ dom 𝐼 ¬ ( 𝑈 ∈ ( 𝐼 ‘ 𝑖 ) ∨ ( 𝐼 ‘ 𝑖 ) = { 𝑈 } ) ↔ ¬ ∃ 𝑖 ∈ dom 𝐼 ( 𝑈 ∈ ( 𝐼 ‘ 𝑖 ) ∨ ( 𝐼 ‘ 𝑖 ) = { 𝑈 } ) ) | |
| 29 | 28 | bicomi | ⊢ ( ¬ ∃ 𝑖 ∈ dom 𝐼 ( 𝑈 ∈ ( 𝐼 ‘ 𝑖 ) ∨ ( 𝐼 ‘ 𝑖 ) = { 𝑈 } ) ↔ ∀ 𝑖 ∈ dom 𝐼 ¬ ( 𝑈 ∈ ( 𝐼 ‘ 𝑖 ) ∨ ( 𝐼 ‘ 𝑖 ) = { 𝑈 } ) ) |
| 30 | ioran | ⊢ ( ¬ ( 𝑈 ∈ ( 𝐼 ‘ 𝑖 ) ∨ ( 𝐼 ‘ 𝑖 ) = { 𝑈 } ) ↔ ( ¬ 𝑈 ∈ ( 𝐼 ‘ 𝑖 ) ∧ ¬ ( 𝐼 ‘ 𝑖 ) = { 𝑈 } ) ) | |
| 31 | 30 | ralbii | ⊢ ( ∀ 𝑖 ∈ dom 𝐼 ¬ ( 𝑈 ∈ ( 𝐼 ‘ 𝑖 ) ∨ ( 𝐼 ‘ 𝑖 ) = { 𝑈 } ) ↔ ∀ 𝑖 ∈ dom 𝐼 ( ¬ 𝑈 ∈ ( 𝐼 ‘ 𝑖 ) ∧ ¬ ( 𝐼 ‘ 𝑖 ) = { 𝑈 } ) ) |
| 32 | r19.26 | ⊢ ( ∀ 𝑖 ∈ dom 𝐼 ( ¬ 𝑈 ∈ ( 𝐼 ‘ 𝑖 ) ∧ ¬ ( 𝐼 ‘ 𝑖 ) = { 𝑈 } ) ↔ ( ∀ 𝑖 ∈ dom 𝐼 ¬ 𝑈 ∈ ( 𝐼 ‘ 𝑖 ) ∧ ∀ 𝑖 ∈ dom 𝐼 ¬ ( 𝐼 ‘ 𝑖 ) = { 𝑈 } ) ) | |
| 33 | 29 31 32 | 3bitri | ⊢ ( ¬ ∃ 𝑖 ∈ dom 𝐼 ( 𝑈 ∈ ( 𝐼 ‘ 𝑖 ) ∨ ( 𝐼 ‘ 𝑖 ) = { 𝑈 } ) ↔ ( ∀ 𝑖 ∈ dom 𝐼 ¬ 𝑈 ∈ ( 𝐼 ‘ 𝑖 ) ∧ ∀ 𝑖 ∈ dom 𝐼 ¬ ( 𝐼 ‘ 𝑖 ) = { 𝑈 } ) ) |
| 34 | 33 | bicomi | ⊢ ( ( ∀ 𝑖 ∈ dom 𝐼 ¬ 𝑈 ∈ ( 𝐼 ‘ 𝑖 ) ∧ ∀ 𝑖 ∈ dom 𝐼 ¬ ( 𝐼 ‘ 𝑖 ) = { 𝑈 } ) ↔ ¬ ∃ 𝑖 ∈ dom 𝐼 ( 𝑈 ∈ ( 𝐼 ‘ 𝑖 ) ∨ ( 𝐼 ‘ 𝑖 ) = { 𝑈 } ) ) |
| 35 | 24 27 34 | 3bitri | ⊢ ( ( ( ♯ ‘ { 𝑖 ∈ dom 𝐼 ∣ 𝑈 ∈ ( 𝐼 ‘ 𝑖 ) } ) = 0 ∧ ( ♯ ‘ { 𝑖 ∈ dom 𝐼 ∣ ( 𝐼 ‘ 𝑖 ) = { 𝑈 } } ) = 0 ) ↔ ¬ ∃ 𝑖 ∈ dom 𝐼 ( 𝑈 ∈ ( 𝐼 ‘ 𝑖 ) ∨ ( 𝐼 ‘ 𝑖 ) = { 𝑈 } ) ) |
| 36 | orcom | ⊢ ( ( 𝑈 ∈ ( 𝐼 ‘ 𝑖 ) ∨ ( 𝐼 ‘ 𝑖 ) = { 𝑈 } ) ↔ ( ( 𝐼 ‘ 𝑖 ) = { 𝑈 } ∨ 𝑈 ∈ ( 𝐼 ‘ 𝑖 ) ) ) | |
| 37 | snidg | ⊢ ( 𝑈 ∈ 𝑉 → 𝑈 ∈ { 𝑈 } ) | |
| 38 | eleq2 | ⊢ ( ( 𝐼 ‘ 𝑖 ) = { 𝑈 } → ( 𝑈 ∈ ( 𝐼 ‘ 𝑖 ) ↔ 𝑈 ∈ { 𝑈 } ) ) | |
| 39 | 37 38 | syl5ibrcom | ⊢ ( 𝑈 ∈ 𝑉 → ( ( 𝐼 ‘ 𝑖 ) = { 𝑈 } → 𝑈 ∈ ( 𝐼 ‘ 𝑖 ) ) ) |
| 40 | pm4.72 | ⊢ ( ( ( 𝐼 ‘ 𝑖 ) = { 𝑈 } → 𝑈 ∈ ( 𝐼 ‘ 𝑖 ) ) ↔ ( 𝑈 ∈ ( 𝐼 ‘ 𝑖 ) ↔ ( ( 𝐼 ‘ 𝑖 ) = { 𝑈 } ∨ 𝑈 ∈ ( 𝐼 ‘ 𝑖 ) ) ) ) | |
| 41 | 39 40 | sylib | ⊢ ( 𝑈 ∈ 𝑉 → ( 𝑈 ∈ ( 𝐼 ‘ 𝑖 ) ↔ ( ( 𝐼 ‘ 𝑖 ) = { 𝑈 } ∨ 𝑈 ∈ ( 𝐼 ‘ 𝑖 ) ) ) ) |
| 42 | 36 41 | bitr4id | ⊢ ( 𝑈 ∈ 𝑉 → ( ( 𝑈 ∈ ( 𝐼 ‘ 𝑖 ) ∨ ( 𝐼 ‘ 𝑖 ) = { 𝑈 } ) ↔ 𝑈 ∈ ( 𝐼 ‘ 𝑖 ) ) ) |
| 43 | 42 | rexbidv | ⊢ ( 𝑈 ∈ 𝑉 → ( ∃ 𝑖 ∈ dom 𝐼 ( 𝑈 ∈ ( 𝐼 ‘ 𝑖 ) ∨ ( 𝐼 ‘ 𝑖 ) = { 𝑈 } ) ↔ ∃ 𝑖 ∈ dom 𝐼 𝑈 ∈ ( 𝐼 ‘ 𝑖 ) ) ) |
| 44 | 43 | notbid | ⊢ ( 𝑈 ∈ 𝑉 → ( ¬ ∃ 𝑖 ∈ dom 𝐼 ( 𝑈 ∈ ( 𝐼 ‘ 𝑖 ) ∨ ( 𝐼 ‘ 𝑖 ) = { 𝑈 } ) ↔ ¬ ∃ 𝑖 ∈ dom 𝐼 𝑈 ∈ ( 𝐼 ‘ 𝑖 ) ) ) |
| 45 | 35 44 | bitrid | ⊢ ( 𝑈 ∈ 𝑉 → ( ( ( ♯ ‘ { 𝑖 ∈ dom 𝐼 ∣ 𝑈 ∈ ( 𝐼 ‘ 𝑖 ) } ) = 0 ∧ ( ♯ ‘ { 𝑖 ∈ dom 𝐼 ∣ ( 𝐼 ‘ 𝑖 ) = { 𝑈 } } ) = 0 ) ↔ ¬ ∃ 𝑖 ∈ dom 𝐼 𝑈 ∈ ( 𝐼 ‘ 𝑖 ) ) ) |
| 46 | 8 19 45 | 3bitrd | ⊢ ( 𝑈 ∈ 𝑉 → ( ( 𝐷 ‘ 𝑈 ) = 0 ↔ ¬ ∃ 𝑖 ∈ dom 𝐼 𝑈 ∈ ( 𝐼 ‘ 𝑖 ) ) ) |