This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for vtxdushgrfvedg and vtxdusgrfvedg . (Contributed by AV, 12-Dec-2020) (Proof shortened by AV, 5-May-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | vtxdushgrfvedg.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| vtxdushgrfvedg.e | ⊢ 𝐸 = ( Edg ‘ 𝐺 ) | ||
| Assertion | vtxdushgrfvedglem | ⊢ ( ( 𝐺 ∈ USHGraph ∧ 𝑈 ∈ 𝑉 ) → ( ♯ ‘ { 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ∣ 𝑈 ∈ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) } ) = ( ♯ ‘ { 𝑒 ∈ 𝐸 ∣ 𝑈 ∈ 𝑒 } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vtxdushgrfvedg.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| 2 | vtxdushgrfvedg.e | ⊢ 𝐸 = ( Edg ‘ 𝐺 ) | |
| 3 | fvex | ⊢ ( iEdg ‘ 𝐺 ) ∈ V | |
| 4 | 3 | dmex | ⊢ dom ( iEdg ‘ 𝐺 ) ∈ V |
| 5 | 4 | rabex | ⊢ { 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ∣ 𝑈 ∈ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) } ∈ V |
| 6 | 5 | a1i | ⊢ ( ( 𝐺 ∈ USHGraph ∧ 𝑈 ∈ 𝑉 ) → { 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ∣ 𝑈 ∈ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) } ∈ V ) |
| 7 | eqid | ⊢ ( iEdg ‘ 𝐺 ) = ( iEdg ‘ 𝐺 ) | |
| 8 | eqid | ⊢ { 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ∣ 𝑈 ∈ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) } = { 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ∣ 𝑈 ∈ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) } | |
| 9 | eleq2w | ⊢ ( 𝑒 = 𝑐 → ( 𝑈 ∈ 𝑒 ↔ 𝑈 ∈ 𝑐 ) ) | |
| 10 | 9 | cbvrabv | ⊢ { 𝑒 ∈ 𝐸 ∣ 𝑈 ∈ 𝑒 } = { 𝑐 ∈ 𝐸 ∣ 𝑈 ∈ 𝑐 } |
| 11 | eqid | ⊢ ( 𝑥 ∈ { 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ∣ 𝑈 ∈ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) } ↦ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ) = ( 𝑥 ∈ { 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ∣ 𝑈 ∈ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) } ↦ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ) | |
| 12 | 2 7 1 8 10 11 | ushgredgedg | ⊢ ( ( 𝐺 ∈ USHGraph ∧ 𝑈 ∈ 𝑉 ) → ( 𝑥 ∈ { 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ∣ 𝑈 ∈ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) } ↦ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ) : { 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ∣ 𝑈 ∈ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) } –1-1-onto→ { 𝑒 ∈ 𝐸 ∣ 𝑈 ∈ 𝑒 } ) |
| 13 | 6 12 | hasheqf1od | ⊢ ( ( 𝐺 ∈ USHGraph ∧ 𝑈 ∈ 𝑉 ) → ( ♯ ‘ { 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ∣ 𝑈 ∈ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) } ) = ( ♯ ‘ { 𝑒 ∈ 𝐸 ∣ 𝑈 ∈ 𝑒 } ) ) |