This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Functionality of the von Mangoldt function. (Contributed by Mario Carneiro, 7-Apr-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | vmaf | ⊢ Λ : ℕ ⟶ ℝ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvex | ⊢ ( log ‘ ∪ 𝑠 ) ∈ V | |
| 2 | c0ex | ⊢ 0 ∈ V | |
| 3 | 1 2 | ifex | ⊢ if ( ( ♯ ‘ 𝑠 ) = 1 , ( log ‘ ∪ 𝑠 ) , 0 ) ∈ V |
| 4 | 3 | csbex | ⊢ ⦋ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑥 } / 𝑠 ⦌ if ( ( ♯ ‘ 𝑠 ) = 1 , ( log ‘ ∪ 𝑠 ) , 0 ) ∈ V |
| 5 | 4 | a1i | ⊢ ( ( ⊤ ∧ 𝑥 ∈ ℕ ) → ⦋ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑥 } / 𝑠 ⦌ if ( ( ♯ ‘ 𝑠 ) = 1 , ( log ‘ ∪ 𝑠 ) , 0 ) ∈ V ) |
| 6 | df-vma | ⊢ Λ = ( 𝑥 ∈ ℕ ↦ ⦋ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑥 } / 𝑠 ⦌ if ( ( ♯ ‘ 𝑠 ) = 1 , ( log ‘ ∪ 𝑠 ) , 0 ) ) | |
| 7 | 6 | a1i | ⊢ ( ⊤ → Λ = ( 𝑥 ∈ ℕ ↦ ⦋ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑥 } / 𝑠 ⦌ if ( ( ♯ ‘ 𝑠 ) = 1 , ( log ‘ ∪ 𝑠 ) , 0 ) ) ) |
| 8 | vmacl | ⊢ ( 𝑛 ∈ ℕ → ( Λ ‘ 𝑛 ) ∈ ℝ ) | |
| 9 | 8 | adantl | ⊢ ( ( ⊤ ∧ 𝑛 ∈ ℕ ) → ( Λ ‘ 𝑛 ) ∈ ℝ ) |
| 10 | 5 7 9 | fmpt2d | ⊢ ( ⊤ → Λ : ℕ ⟶ ℝ ) |
| 11 | 10 | mptru | ⊢ Λ : ℕ ⟶ ℝ |