This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Functionality of the von Mangoldt function. (Contributed by Mario Carneiro, 7-Apr-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | vmaf | |- Lam : NN --> RR |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvex | |- ( log ` U. s ) e. _V |
|
| 2 | c0ex | |- 0 e. _V |
|
| 3 | 1 2 | ifex | |- if ( ( # ` s ) = 1 , ( log ` U. s ) , 0 ) e. _V |
| 4 | 3 | csbex | |- [_ { p e. Prime | p || x } / s ]_ if ( ( # ` s ) = 1 , ( log ` U. s ) , 0 ) e. _V |
| 5 | 4 | a1i | |- ( ( T. /\ x e. NN ) -> [_ { p e. Prime | p || x } / s ]_ if ( ( # ` s ) = 1 , ( log ` U. s ) , 0 ) e. _V ) |
| 6 | df-vma | |- Lam = ( x e. NN |-> [_ { p e. Prime | p || x } / s ]_ if ( ( # ` s ) = 1 , ( log ` U. s ) , 0 ) ) |
|
| 7 | 6 | a1i | |- ( T. -> Lam = ( x e. NN |-> [_ { p e. Prime | p || x } / s ]_ if ( ( # ` s ) = 1 , ( log ` U. s ) , 0 ) ) ) |
| 8 | vmacl | |- ( n e. NN -> ( Lam ` n ) e. RR ) |
|
| 9 | 8 | adantl | |- ( ( T. /\ n e. NN ) -> ( Lam ` n ) e. RR ) |
| 10 | 5 7 9 | fmpt2d | |- ( T. -> Lam : NN --> RR ) |
| 11 | 10 | mptru | |- Lam : NN --> RR |