This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Closure for the von Mangoldt function. (Contributed by Mario Carneiro, 7-Apr-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | vmacl | ⊢ ( 𝐴 ∈ ℕ → ( Λ ‘ 𝐴 ) ∈ ℝ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq1 | ⊢ ( ( Λ ‘ 𝐴 ) = 0 → ( ( Λ ‘ 𝐴 ) ∈ ℝ ↔ 0 ∈ ℝ ) ) | |
| 2 | isppw2 | ⊢ ( 𝐴 ∈ ℕ → ( ( Λ ‘ 𝐴 ) ≠ 0 ↔ ∃ 𝑝 ∈ ℙ ∃ 𝑘 ∈ ℕ 𝐴 = ( 𝑝 ↑ 𝑘 ) ) ) | |
| 3 | vmappw | ⊢ ( ( 𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ ) → ( Λ ‘ ( 𝑝 ↑ 𝑘 ) ) = ( log ‘ 𝑝 ) ) | |
| 4 | prmnn | ⊢ ( 𝑝 ∈ ℙ → 𝑝 ∈ ℕ ) | |
| 5 | 4 | nnrpd | ⊢ ( 𝑝 ∈ ℙ → 𝑝 ∈ ℝ+ ) |
| 6 | 5 | relogcld | ⊢ ( 𝑝 ∈ ℙ → ( log ‘ 𝑝 ) ∈ ℝ ) |
| 7 | 6 | adantr | ⊢ ( ( 𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ ) → ( log ‘ 𝑝 ) ∈ ℝ ) |
| 8 | 3 7 | eqeltrd | ⊢ ( ( 𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ ) → ( Λ ‘ ( 𝑝 ↑ 𝑘 ) ) ∈ ℝ ) |
| 9 | fveq2 | ⊢ ( 𝐴 = ( 𝑝 ↑ 𝑘 ) → ( Λ ‘ 𝐴 ) = ( Λ ‘ ( 𝑝 ↑ 𝑘 ) ) ) | |
| 10 | 9 | eleq1d | ⊢ ( 𝐴 = ( 𝑝 ↑ 𝑘 ) → ( ( Λ ‘ 𝐴 ) ∈ ℝ ↔ ( Λ ‘ ( 𝑝 ↑ 𝑘 ) ) ∈ ℝ ) ) |
| 11 | 8 10 | syl5ibrcom | ⊢ ( ( 𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ ) → ( 𝐴 = ( 𝑝 ↑ 𝑘 ) → ( Λ ‘ 𝐴 ) ∈ ℝ ) ) |
| 12 | 11 | rexlimivv | ⊢ ( ∃ 𝑝 ∈ ℙ ∃ 𝑘 ∈ ℕ 𝐴 = ( 𝑝 ↑ 𝑘 ) → ( Λ ‘ 𝐴 ) ∈ ℝ ) |
| 13 | 2 12 | biimtrdi | ⊢ ( 𝐴 ∈ ℕ → ( ( Λ ‘ 𝐴 ) ≠ 0 → ( Λ ‘ 𝐴 ) ∈ ℝ ) ) |
| 14 | 13 | imp | ⊢ ( ( 𝐴 ∈ ℕ ∧ ( Λ ‘ 𝐴 ) ≠ 0 ) → ( Λ ‘ 𝐴 ) ∈ ℝ ) |
| 15 | 0red | ⊢ ( 𝐴 ∈ ℕ → 0 ∈ ℝ ) | |
| 16 | 1 14 15 | pm2.61ne | ⊢ ( 𝐴 ∈ ℕ → ( Λ ‘ 𝐴 ) ∈ ℝ ) |