This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The von Mangoldt is closed in the log-integers. (Contributed by Mario Carneiro, 7-Apr-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | efvmacl | ⊢ ( 𝐴 ∈ ℕ → ( exp ‘ ( Λ ‘ 𝐴 ) ) ∈ ℕ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq2 | ⊢ ( ( Λ ‘ 𝐴 ) = 0 → ( exp ‘ ( Λ ‘ 𝐴 ) ) = ( exp ‘ 0 ) ) | |
| 2 | ef0 | ⊢ ( exp ‘ 0 ) = 1 | |
| 3 | 1 2 | eqtrdi | ⊢ ( ( Λ ‘ 𝐴 ) = 0 → ( exp ‘ ( Λ ‘ 𝐴 ) ) = 1 ) |
| 4 | 3 | eleq1d | ⊢ ( ( Λ ‘ 𝐴 ) = 0 → ( ( exp ‘ ( Λ ‘ 𝐴 ) ) ∈ ℕ ↔ 1 ∈ ℕ ) ) |
| 5 | isppw2 | ⊢ ( 𝐴 ∈ ℕ → ( ( Λ ‘ 𝐴 ) ≠ 0 ↔ ∃ 𝑝 ∈ ℙ ∃ 𝑘 ∈ ℕ 𝐴 = ( 𝑝 ↑ 𝑘 ) ) ) | |
| 6 | vmappw | ⊢ ( ( 𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ ) → ( Λ ‘ ( 𝑝 ↑ 𝑘 ) ) = ( log ‘ 𝑝 ) ) | |
| 7 | 6 | fveq2d | ⊢ ( ( 𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ ) → ( exp ‘ ( Λ ‘ ( 𝑝 ↑ 𝑘 ) ) ) = ( exp ‘ ( log ‘ 𝑝 ) ) ) |
| 8 | prmnn | ⊢ ( 𝑝 ∈ ℙ → 𝑝 ∈ ℕ ) | |
| 9 | 8 | nnrpd | ⊢ ( 𝑝 ∈ ℙ → 𝑝 ∈ ℝ+ ) |
| 10 | 9 | reeflogd | ⊢ ( 𝑝 ∈ ℙ → ( exp ‘ ( log ‘ 𝑝 ) ) = 𝑝 ) |
| 11 | 10 8 | eqeltrd | ⊢ ( 𝑝 ∈ ℙ → ( exp ‘ ( log ‘ 𝑝 ) ) ∈ ℕ ) |
| 12 | 11 | adantr | ⊢ ( ( 𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ ) → ( exp ‘ ( log ‘ 𝑝 ) ) ∈ ℕ ) |
| 13 | 7 12 | eqeltrd | ⊢ ( ( 𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ ) → ( exp ‘ ( Λ ‘ ( 𝑝 ↑ 𝑘 ) ) ) ∈ ℕ ) |
| 14 | fveq2 | ⊢ ( 𝐴 = ( 𝑝 ↑ 𝑘 ) → ( Λ ‘ 𝐴 ) = ( Λ ‘ ( 𝑝 ↑ 𝑘 ) ) ) | |
| 15 | 14 | fveq2d | ⊢ ( 𝐴 = ( 𝑝 ↑ 𝑘 ) → ( exp ‘ ( Λ ‘ 𝐴 ) ) = ( exp ‘ ( Λ ‘ ( 𝑝 ↑ 𝑘 ) ) ) ) |
| 16 | 15 | eleq1d | ⊢ ( 𝐴 = ( 𝑝 ↑ 𝑘 ) → ( ( exp ‘ ( Λ ‘ 𝐴 ) ) ∈ ℕ ↔ ( exp ‘ ( Λ ‘ ( 𝑝 ↑ 𝑘 ) ) ) ∈ ℕ ) ) |
| 17 | 13 16 | syl5ibrcom | ⊢ ( ( 𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ ) → ( 𝐴 = ( 𝑝 ↑ 𝑘 ) → ( exp ‘ ( Λ ‘ 𝐴 ) ) ∈ ℕ ) ) |
| 18 | 17 | rexlimivv | ⊢ ( ∃ 𝑝 ∈ ℙ ∃ 𝑘 ∈ ℕ 𝐴 = ( 𝑝 ↑ 𝑘 ) → ( exp ‘ ( Λ ‘ 𝐴 ) ) ∈ ℕ ) |
| 19 | 5 18 | biimtrdi | ⊢ ( 𝐴 ∈ ℕ → ( ( Λ ‘ 𝐴 ) ≠ 0 → ( exp ‘ ( Λ ‘ 𝐴 ) ) ∈ ℕ ) ) |
| 20 | 19 | imp | ⊢ ( ( 𝐴 ∈ ℕ ∧ ( Λ ‘ 𝐴 ) ≠ 0 ) → ( exp ‘ ( Λ ‘ 𝐴 ) ) ∈ ℕ ) |
| 21 | 1nn | ⊢ 1 ∈ ℕ | |
| 22 | 21 | a1i | ⊢ ( 𝐴 ∈ ℕ → 1 ∈ ℕ ) |
| 23 | 4 20 22 | pm2.61ne | ⊢ ( 𝐴 ∈ ℕ → ( exp ‘ ( Λ ‘ 𝐴 ) ) ∈ ℕ ) |