This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Anything times the zero vector is the zero vector. Equation 1b of Kreyszig p. 51. (Contributed by NM, 24-Nov-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | vc0.1 | ⊢ 𝐺 = ( 1st ‘ 𝑊 ) | |
| vc0.2 | ⊢ 𝑆 = ( 2nd ‘ 𝑊 ) | ||
| vc0.3 | ⊢ 𝑋 = ran 𝐺 | ||
| vc0.4 | ⊢ 𝑍 = ( GId ‘ 𝐺 ) | ||
| Assertion | vcz | ⊢ ( ( 𝑊 ∈ CVecOLD ∧ 𝐴 ∈ ℂ ) → ( 𝐴 𝑆 𝑍 ) = 𝑍 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vc0.1 | ⊢ 𝐺 = ( 1st ‘ 𝑊 ) | |
| 2 | vc0.2 | ⊢ 𝑆 = ( 2nd ‘ 𝑊 ) | |
| 3 | vc0.3 | ⊢ 𝑋 = ran 𝐺 | |
| 4 | vc0.4 | ⊢ 𝑍 = ( GId ‘ 𝐺 ) | |
| 5 | 1 3 4 | vczcl | ⊢ ( 𝑊 ∈ CVecOLD → 𝑍 ∈ 𝑋 ) |
| 6 | 5 | anim2i | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑊 ∈ CVecOLD ) → ( 𝐴 ∈ ℂ ∧ 𝑍 ∈ 𝑋 ) ) |
| 7 | 6 | ancoms | ⊢ ( ( 𝑊 ∈ CVecOLD ∧ 𝐴 ∈ ℂ ) → ( 𝐴 ∈ ℂ ∧ 𝑍 ∈ 𝑋 ) ) |
| 8 | 0cn | ⊢ 0 ∈ ℂ | |
| 9 | 1 2 3 | vcass | ⊢ ( ( 𝑊 ∈ CVecOLD ∧ ( 𝐴 ∈ ℂ ∧ 0 ∈ ℂ ∧ 𝑍 ∈ 𝑋 ) ) → ( ( 𝐴 · 0 ) 𝑆 𝑍 ) = ( 𝐴 𝑆 ( 0 𝑆 𝑍 ) ) ) |
| 10 | 8 9 | mp3anr2 | ⊢ ( ( 𝑊 ∈ CVecOLD ∧ ( 𝐴 ∈ ℂ ∧ 𝑍 ∈ 𝑋 ) ) → ( ( 𝐴 · 0 ) 𝑆 𝑍 ) = ( 𝐴 𝑆 ( 0 𝑆 𝑍 ) ) ) |
| 11 | 7 10 | syldan | ⊢ ( ( 𝑊 ∈ CVecOLD ∧ 𝐴 ∈ ℂ ) → ( ( 𝐴 · 0 ) 𝑆 𝑍 ) = ( 𝐴 𝑆 ( 0 𝑆 𝑍 ) ) ) |
| 12 | mul01 | ⊢ ( 𝐴 ∈ ℂ → ( 𝐴 · 0 ) = 0 ) | |
| 13 | 12 | oveq1d | ⊢ ( 𝐴 ∈ ℂ → ( ( 𝐴 · 0 ) 𝑆 𝑍 ) = ( 0 𝑆 𝑍 ) ) |
| 14 | 1 2 3 4 | vc0 | ⊢ ( ( 𝑊 ∈ CVecOLD ∧ 𝑍 ∈ 𝑋 ) → ( 0 𝑆 𝑍 ) = 𝑍 ) |
| 15 | 5 14 | mpdan | ⊢ ( 𝑊 ∈ CVecOLD → ( 0 𝑆 𝑍 ) = 𝑍 ) |
| 16 | 13 15 | sylan9eqr | ⊢ ( ( 𝑊 ∈ CVecOLD ∧ 𝐴 ∈ ℂ ) → ( ( 𝐴 · 0 ) 𝑆 𝑍 ) = 𝑍 ) |
| 17 | 15 | oveq2d | ⊢ ( 𝑊 ∈ CVecOLD → ( 𝐴 𝑆 ( 0 𝑆 𝑍 ) ) = ( 𝐴 𝑆 𝑍 ) ) |
| 18 | 17 | adantr | ⊢ ( ( 𝑊 ∈ CVecOLD ∧ 𝐴 ∈ ℂ ) → ( 𝐴 𝑆 ( 0 𝑆 𝑍 ) ) = ( 𝐴 𝑆 𝑍 ) ) |
| 19 | 11 16 18 | 3eqtr3rd | ⊢ ( ( 𝑊 ∈ CVecOLD ∧ 𝐴 ∈ ℂ ) → ( 𝐴 𝑆 𝑍 ) = 𝑍 ) |