This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Associative law for the scalar product of a complex vector space. (Contributed by NM, 3-Nov-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | vciOLD.1 | ⊢ 𝐺 = ( 1st ‘ 𝑊 ) | |
| vciOLD.2 | ⊢ 𝑆 = ( 2nd ‘ 𝑊 ) | ||
| vciOLD.3 | ⊢ 𝑋 = ran 𝐺 | ||
| Assertion | vcass | ⊢ ( ( 𝑊 ∈ CVecOLD ∧ ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ 𝑋 ) ) → ( ( 𝐴 · 𝐵 ) 𝑆 𝐶 ) = ( 𝐴 𝑆 ( 𝐵 𝑆 𝐶 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vciOLD.1 | ⊢ 𝐺 = ( 1st ‘ 𝑊 ) | |
| 2 | vciOLD.2 | ⊢ 𝑆 = ( 2nd ‘ 𝑊 ) | |
| 3 | vciOLD.3 | ⊢ 𝑋 = ran 𝐺 | |
| 4 | 1 2 3 | vciOLD | ⊢ ( 𝑊 ∈ CVecOLD → ( 𝐺 ∈ AbelOp ∧ 𝑆 : ( ℂ × 𝑋 ) ⟶ 𝑋 ∧ ∀ 𝑥 ∈ 𝑋 ( ( 1 𝑆 𝑥 ) = 𝑥 ∧ ∀ 𝑦 ∈ ℂ ( ∀ 𝑧 ∈ 𝑋 ( 𝑦 𝑆 ( 𝑥 𝐺 𝑧 ) ) = ( ( 𝑦 𝑆 𝑥 ) 𝐺 ( 𝑦 𝑆 𝑧 ) ) ∧ ∀ 𝑧 ∈ ℂ ( ( ( 𝑦 + 𝑧 ) 𝑆 𝑥 ) = ( ( 𝑦 𝑆 𝑥 ) 𝐺 ( 𝑧 𝑆 𝑥 ) ) ∧ ( ( 𝑦 · 𝑧 ) 𝑆 𝑥 ) = ( 𝑦 𝑆 ( 𝑧 𝑆 𝑥 ) ) ) ) ) ) ) |
| 5 | simpr | ⊢ ( ( ( ( 𝑦 + 𝑧 ) 𝑆 𝑥 ) = ( ( 𝑦 𝑆 𝑥 ) 𝐺 ( 𝑧 𝑆 𝑥 ) ) ∧ ( ( 𝑦 · 𝑧 ) 𝑆 𝑥 ) = ( 𝑦 𝑆 ( 𝑧 𝑆 𝑥 ) ) ) → ( ( 𝑦 · 𝑧 ) 𝑆 𝑥 ) = ( 𝑦 𝑆 ( 𝑧 𝑆 𝑥 ) ) ) | |
| 6 | 5 | ralimi | ⊢ ( ∀ 𝑧 ∈ ℂ ( ( ( 𝑦 + 𝑧 ) 𝑆 𝑥 ) = ( ( 𝑦 𝑆 𝑥 ) 𝐺 ( 𝑧 𝑆 𝑥 ) ) ∧ ( ( 𝑦 · 𝑧 ) 𝑆 𝑥 ) = ( 𝑦 𝑆 ( 𝑧 𝑆 𝑥 ) ) ) → ∀ 𝑧 ∈ ℂ ( ( 𝑦 · 𝑧 ) 𝑆 𝑥 ) = ( 𝑦 𝑆 ( 𝑧 𝑆 𝑥 ) ) ) |
| 7 | 6 | adantl | ⊢ ( ( ∀ 𝑧 ∈ 𝑋 ( 𝑦 𝑆 ( 𝑥 𝐺 𝑧 ) ) = ( ( 𝑦 𝑆 𝑥 ) 𝐺 ( 𝑦 𝑆 𝑧 ) ) ∧ ∀ 𝑧 ∈ ℂ ( ( ( 𝑦 + 𝑧 ) 𝑆 𝑥 ) = ( ( 𝑦 𝑆 𝑥 ) 𝐺 ( 𝑧 𝑆 𝑥 ) ) ∧ ( ( 𝑦 · 𝑧 ) 𝑆 𝑥 ) = ( 𝑦 𝑆 ( 𝑧 𝑆 𝑥 ) ) ) ) → ∀ 𝑧 ∈ ℂ ( ( 𝑦 · 𝑧 ) 𝑆 𝑥 ) = ( 𝑦 𝑆 ( 𝑧 𝑆 𝑥 ) ) ) |
| 8 | 7 | ralimi | ⊢ ( ∀ 𝑦 ∈ ℂ ( ∀ 𝑧 ∈ 𝑋 ( 𝑦 𝑆 ( 𝑥 𝐺 𝑧 ) ) = ( ( 𝑦 𝑆 𝑥 ) 𝐺 ( 𝑦 𝑆 𝑧 ) ) ∧ ∀ 𝑧 ∈ ℂ ( ( ( 𝑦 + 𝑧 ) 𝑆 𝑥 ) = ( ( 𝑦 𝑆 𝑥 ) 𝐺 ( 𝑧 𝑆 𝑥 ) ) ∧ ( ( 𝑦 · 𝑧 ) 𝑆 𝑥 ) = ( 𝑦 𝑆 ( 𝑧 𝑆 𝑥 ) ) ) ) → ∀ 𝑦 ∈ ℂ ∀ 𝑧 ∈ ℂ ( ( 𝑦 · 𝑧 ) 𝑆 𝑥 ) = ( 𝑦 𝑆 ( 𝑧 𝑆 𝑥 ) ) ) |
| 9 | 8 | adantl | ⊢ ( ( ( 1 𝑆 𝑥 ) = 𝑥 ∧ ∀ 𝑦 ∈ ℂ ( ∀ 𝑧 ∈ 𝑋 ( 𝑦 𝑆 ( 𝑥 𝐺 𝑧 ) ) = ( ( 𝑦 𝑆 𝑥 ) 𝐺 ( 𝑦 𝑆 𝑧 ) ) ∧ ∀ 𝑧 ∈ ℂ ( ( ( 𝑦 + 𝑧 ) 𝑆 𝑥 ) = ( ( 𝑦 𝑆 𝑥 ) 𝐺 ( 𝑧 𝑆 𝑥 ) ) ∧ ( ( 𝑦 · 𝑧 ) 𝑆 𝑥 ) = ( 𝑦 𝑆 ( 𝑧 𝑆 𝑥 ) ) ) ) ) → ∀ 𝑦 ∈ ℂ ∀ 𝑧 ∈ ℂ ( ( 𝑦 · 𝑧 ) 𝑆 𝑥 ) = ( 𝑦 𝑆 ( 𝑧 𝑆 𝑥 ) ) ) |
| 10 | 9 | ralimi | ⊢ ( ∀ 𝑥 ∈ 𝑋 ( ( 1 𝑆 𝑥 ) = 𝑥 ∧ ∀ 𝑦 ∈ ℂ ( ∀ 𝑧 ∈ 𝑋 ( 𝑦 𝑆 ( 𝑥 𝐺 𝑧 ) ) = ( ( 𝑦 𝑆 𝑥 ) 𝐺 ( 𝑦 𝑆 𝑧 ) ) ∧ ∀ 𝑧 ∈ ℂ ( ( ( 𝑦 + 𝑧 ) 𝑆 𝑥 ) = ( ( 𝑦 𝑆 𝑥 ) 𝐺 ( 𝑧 𝑆 𝑥 ) ) ∧ ( ( 𝑦 · 𝑧 ) 𝑆 𝑥 ) = ( 𝑦 𝑆 ( 𝑧 𝑆 𝑥 ) ) ) ) ) → ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ ℂ ∀ 𝑧 ∈ ℂ ( ( 𝑦 · 𝑧 ) 𝑆 𝑥 ) = ( 𝑦 𝑆 ( 𝑧 𝑆 𝑥 ) ) ) |
| 11 | 10 | 3ad2ant3 | ⊢ ( ( 𝐺 ∈ AbelOp ∧ 𝑆 : ( ℂ × 𝑋 ) ⟶ 𝑋 ∧ ∀ 𝑥 ∈ 𝑋 ( ( 1 𝑆 𝑥 ) = 𝑥 ∧ ∀ 𝑦 ∈ ℂ ( ∀ 𝑧 ∈ 𝑋 ( 𝑦 𝑆 ( 𝑥 𝐺 𝑧 ) ) = ( ( 𝑦 𝑆 𝑥 ) 𝐺 ( 𝑦 𝑆 𝑧 ) ) ∧ ∀ 𝑧 ∈ ℂ ( ( ( 𝑦 + 𝑧 ) 𝑆 𝑥 ) = ( ( 𝑦 𝑆 𝑥 ) 𝐺 ( 𝑧 𝑆 𝑥 ) ) ∧ ( ( 𝑦 · 𝑧 ) 𝑆 𝑥 ) = ( 𝑦 𝑆 ( 𝑧 𝑆 𝑥 ) ) ) ) ) ) → ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ ℂ ∀ 𝑧 ∈ ℂ ( ( 𝑦 · 𝑧 ) 𝑆 𝑥 ) = ( 𝑦 𝑆 ( 𝑧 𝑆 𝑥 ) ) ) |
| 12 | 4 11 | syl | ⊢ ( 𝑊 ∈ CVecOLD → ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ ℂ ∀ 𝑧 ∈ ℂ ( ( 𝑦 · 𝑧 ) 𝑆 𝑥 ) = ( 𝑦 𝑆 ( 𝑧 𝑆 𝑥 ) ) ) |
| 13 | oveq2 | ⊢ ( 𝑥 = 𝐶 → ( ( 𝑦 · 𝑧 ) 𝑆 𝑥 ) = ( ( 𝑦 · 𝑧 ) 𝑆 𝐶 ) ) | |
| 14 | oveq2 | ⊢ ( 𝑥 = 𝐶 → ( 𝑧 𝑆 𝑥 ) = ( 𝑧 𝑆 𝐶 ) ) | |
| 15 | 14 | oveq2d | ⊢ ( 𝑥 = 𝐶 → ( 𝑦 𝑆 ( 𝑧 𝑆 𝑥 ) ) = ( 𝑦 𝑆 ( 𝑧 𝑆 𝐶 ) ) ) |
| 16 | 13 15 | eqeq12d | ⊢ ( 𝑥 = 𝐶 → ( ( ( 𝑦 · 𝑧 ) 𝑆 𝑥 ) = ( 𝑦 𝑆 ( 𝑧 𝑆 𝑥 ) ) ↔ ( ( 𝑦 · 𝑧 ) 𝑆 𝐶 ) = ( 𝑦 𝑆 ( 𝑧 𝑆 𝐶 ) ) ) ) |
| 17 | oveq1 | ⊢ ( 𝑦 = 𝐴 → ( 𝑦 · 𝑧 ) = ( 𝐴 · 𝑧 ) ) | |
| 18 | 17 | oveq1d | ⊢ ( 𝑦 = 𝐴 → ( ( 𝑦 · 𝑧 ) 𝑆 𝐶 ) = ( ( 𝐴 · 𝑧 ) 𝑆 𝐶 ) ) |
| 19 | oveq1 | ⊢ ( 𝑦 = 𝐴 → ( 𝑦 𝑆 ( 𝑧 𝑆 𝐶 ) ) = ( 𝐴 𝑆 ( 𝑧 𝑆 𝐶 ) ) ) | |
| 20 | 18 19 | eqeq12d | ⊢ ( 𝑦 = 𝐴 → ( ( ( 𝑦 · 𝑧 ) 𝑆 𝐶 ) = ( 𝑦 𝑆 ( 𝑧 𝑆 𝐶 ) ) ↔ ( ( 𝐴 · 𝑧 ) 𝑆 𝐶 ) = ( 𝐴 𝑆 ( 𝑧 𝑆 𝐶 ) ) ) ) |
| 21 | oveq2 | ⊢ ( 𝑧 = 𝐵 → ( 𝐴 · 𝑧 ) = ( 𝐴 · 𝐵 ) ) | |
| 22 | 21 | oveq1d | ⊢ ( 𝑧 = 𝐵 → ( ( 𝐴 · 𝑧 ) 𝑆 𝐶 ) = ( ( 𝐴 · 𝐵 ) 𝑆 𝐶 ) ) |
| 23 | oveq1 | ⊢ ( 𝑧 = 𝐵 → ( 𝑧 𝑆 𝐶 ) = ( 𝐵 𝑆 𝐶 ) ) | |
| 24 | 23 | oveq2d | ⊢ ( 𝑧 = 𝐵 → ( 𝐴 𝑆 ( 𝑧 𝑆 𝐶 ) ) = ( 𝐴 𝑆 ( 𝐵 𝑆 𝐶 ) ) ) |
| 25 | 22 24 | eqeq12d | ⊢ ( 𝑧 = 𝐵 → ( ( ( 𝐴 · 𝑧 ) 𝑆 𝐶 ) = ( 𝐴 𝑆 ( 𝑧 𝑆 𝐶 ) ) ↔ ( ( 𝐴 · 𝐵 ) 𝑆 𝐶 ) = ( 𝐴 𝑆 ( 𝐵 𝑆 𝐶 ) ) ) ) |
| 26 | 16 20 25 | rspc3v | ⊢ ( ( 𝐶 ∈ 𝑋 ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ ℂ ∀ 𝑧 ∈ ℂ ( ( 𝑦 · 𝑧 ) 𝑆 𝑥 ) = ( 𝑦 𝑆 ( 𝑧 𝑆 𝑥 ) ) → ( ( 𝐴 · 𝐵 ) 𝑆 𝐶 ) = ( 𝐴 𝑆 ( 𝐵 𝑆 𝐶 ) ) ) ) |
| 27 | 12 26 | syl5 | ⊢ ( ( 𝐶 ∈ 𝑋 ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝑊 ∈ CVecOLD → ( ( 𝐴 · 𝐵 ) 𝑆 𝐶 ) = ( 𝐴 𝑆 ( 𝐵 𝑆 𝐶 ) ) ) ) |
| 28 | 27 | 3coml | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ 𝑋 ) → ( 𝑊 ∈ CVecOLD → ( ( 𝐴 · 𝐵 ) 𝑆 𝐶 ) = ( 𝐴 𝑆 ( 𝐵 𝑆 𝐶 ) ) ) ) |
| 29 | 28 | impcom | ⊢ ( ( 𝑊 ∈ CVecOLD ∧ ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ 𝑋 ) ) → ( ( 𝐴 · 𝐵 ) 𝑆 𝐶 ) = ( 𝐴 𝑆 ( 𝐵 𝑆 𝐶 ) ) ) |