This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Anything times the zero vector is the zero vector. Equation 1b of Kreyszig p. 51. (Contributed by NM, 24-Nov-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | vc0.1 | |- G = ( 1st ` W ) |
|
| vc0.2 | |- S = ( 2nd ` W ) |
||
| vc0.3 | |- X = ran G |
||
| vc0.4 | |- Z = ( GId ` G ) |
||
| Assertion | vcz | |- ( ( W e. CVecOLD /\ A e. CC ) -> ( A S Z ) = Z ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vc0.1 | |- G = ( 1st ` W ) |
|
| 2 | vc0.2 | |- S = ( 2nd ` W ) |
|
| 3 | vc0.3 | |- X = ran G |
|
| 4 | vc0.4 | |- Z = ( GId ` G ) |
|
| 5 | 1 3 4 | vczcl | |- ( W e. CVecOLD -> Z e. X ) |
| 6 | 5 | anim2i | |- ( ( A e. CC /\ W e. CVecOLD ) -> ( A e. CC /\ Z e. X ) ) |
| 7 | 6 | ancoms | |- ( ( W e. CVecOLD /\ A e. CC ) -> ( A e. CC /\ Z e. X ) ) |
| 8 | 0cn | |- 0 e. CC |
|
| 9 | 1 2 3 | vcass | |- ( ( W e. CVecOLD /\ ( A e. CC /\ 0 e. CC /\ Z e. X ) ) -> ( ( A x. 0 ) S Z ) = ( A S ( 0 S Z ) ) ) |
| 10 | 8 9 | mp3anr2 | |- ( ( W e. CVecOLD /\ ( A e. CC /\ Z e. X ) ) -> ( ( A x. 0 ) S Z ) = ( A S ( 0 S Z ) ) ) |
| 11 | 7 10 | syldan | |- ( ( W e. CVecOLD /\ A e. CC ) -> ( ( A x. 0 ) S Z ) = ( A S ( 0 S Z ) ) ) |
| 12 | mul01 | |- ( A e. CC -> ( A x. 0 ) = 0 ) |
|
| 13 | 12 | oveq1d | |- ( A e. CC -> ( ( A x. 0 ) S Z ) = ( 0 S Z ) ) |
| 14 | 1 2 3 4 | vc0 | |- ( ( W e. CVecOLD /\ Z e. X ) -> ( 0 S Z ) = Z ) |
| 15 | 5 14 | mpdan | |- ( W e. CVecOLD -> ( 0 S Z ) = Z ) |
| 16 | 13 15 | sylan9eqr | |- ( ( W e. CVecOLD /\ A e. CC ) -> ( ( A x. 0 ) S Z ) = Z ) |
| 17 | 15 | oveq2d | |- ( W e. CVecOLD -> ( A S ( 0 S Z ) ) = ( A S Z ) ) |
| 18 | 17 | adantr | |- ( ( W e. CVecOLD /\ A e. CC ) -> ( A S ( 0 S Z ) ) = ( A S Z ) ) |
| 19 | 11 16 18 | 3eqtr3rd | |- ( ( W e. CVecOLD /\ A e. CC ) -> ( A S Z ) = Z ) |