This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The restriction of the set of upper sets of integers to an upper set of integers is the set of upper sets of integers based at a point above the cutoff. (Contributed by Mario Carneiro, 13-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | uzfbas.1 | ⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) | |
| Assertion | uzrest | ⊢ ( 𝑀 ∈ ℤ → ( ran ℤ≥ ↾t 𝑍 ) = ( ℤ≥ “ 𝑍 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uzfbas.1 | ⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) | |
| 2 | zex | ⊢ ℤ ∈ V | |
| 3 | 2 | pwex | ⊢ 𝒫 ℤ ∈ V |
| 4 | uzf | ⊢ ℤ≥ : ℤ ⟶ 𝒫 ℤ | |
| 5 | frn | ⊢ ( ℤ≥ : ℤ ⟶ 𝒫 ℤ → ran ℤ≥ ⊆ 𝒫 ℤ ) | |
| 6 | 4 5 | ax-mp | ⊢ ran ℤ≥ ⊆ 𝒫 ℤ |
| 7 | 3 6 | ssexi | ⊢ ran ℤ≥ ∈ V |
| 8 | 1 | fvexi | ⊢ 𝑍 ∈ V |
| 9 | restval | ⊢ ( ( ran ℤ≥ ∈ V ∧ 𝑍 ∈ V ) → ( ran ℤ≥ ↾t 𝑍 ) = ran ( 𝑥 ∈ ran ℤ≥ ↦ ( 𝑥 ∩ 𝑍 ) ) ) | |
| 10 | 7 8 9 | mp2an | ⊢ ( ran ℤ≥ ↾t 𝑍 ) = ran ( 𝑥 ∈ ran ℤ≥ ↦ ( 𝑥 ∩ 𝑍 ) ) |
| 11 | 1 | ineq2i | ⊢ ( ( ℤ≥ ‘ 𝑦 ) ∩ 𝑍 ) = ( ( ℤ≥ ‘ 𝑦 ) ∩ ( ℤ≥ ‘ 𝑀 ) ) |
| 12 | uzin | ⊢ ( ( 𝑦 ∈ ℤ ∧ 𝑀 ∈ ℤ ) → ( ( ℤ≥ ‘ 𝑦 ) ∩ ( ℤ≥ ‘ 𝑀 ) ) = ( ℤ≥ ‘ if ( 𝑦 ≤ 𝑀 , 𝑀 , 𝑦 ) ) ) | |
| 13 | 12 | ancoms | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑦 ∈ ℤ ) → ( ( ℤ≥ ‘ 𝑦 ) ∩ ( ℤ≥ ‘ 𝑀 ) ) = ( ℤ≥ ‘ if ( 𝑦 ≤ 𝑀 , 𝑀 , 𝑦 ) ) ) |
| 14 | 11 13 | eqtrid | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑦 ∈ ℤ ) → ( ( ℤ≥ ‘ 𝑦 ) ∩ 𝑍 ) = ( ℤ≥ ‘ if ( 𝑦 ≤ 𝑀 , 𝑀 , 𝑦 ) ) ) |
| 15 | ffn | ⊢ ( ℤ≥ : ℤ ⟶ 𝒫 ℤ → ℤ≥ Fn ℤ ) | |
| 16 | 4 15 | ax-mp | ⊢ ℤ≥ Fn ℤ |
| 17 | uzssz | ⊢ ( ℤ≥ ‘ 𝑀 ) ⊆ ℤ | |
| 18 | 1 17 | eqsstri | ⊢ 𝑍 ⊆ ℤ |
| 19 | ifcl | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑦 ∈ ℤ ) → if ( 𝑦 ≤ 𝑀 , 𝑀 , 𝑦 ) ∈ ℤ ) | |
| 20 | uzid | ⊢ ( if ( 𝑦 ≤ 𝑀 , 𝑀 , 𝑦 ) ∈ ℤ → if ( 𝑦 ≤ 𝑀 , 𝑀 , 𝑦 ) ∈ ( ℤ≥ ‘ if ( 𝑦 ≤ 𝑀 , 𝑀 , 𝑦 ) ) ) | |
| 21 | 19 20 | syl | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑦 ∈ ℤ ) → if ( 𝑦 ≤ 𝑀 , 𝑀 , 𝑦 ) ∈ ( ℤ≥ ‘ if ( 𝑦 ≤ 𝑀 , 𝑀 , 𝑦 ) ) ) |
| 22 | 21 14 | eleqtrrd | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑦 ∈ ℤ ) → if ( 𝑦 ≤ 𝑀 , 𝑀 , 𝑦 ) ∈ ( ( ℤ≥ ‘ 𝑦 ) ∩ 𝑍 ) ) |
| 23 | 22 | elin2d | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑦 ∈ ℤ ) → if ( 𝑦 ≤ 𝑀 , 𝑀 , 𝑦 ) ∈ 𝑍 ) |
| 24 | fnfvima | ⊢ ( ( ℤ≥ Fn ℤ ∧ 𝑍 ⊆ ℤ ∧ if ( 𝑦 ≤ 𝑀 , 𝑀 , 𝑦 ) ∈ 𝑍 ) → ( ℤ≥ ‘ if ( 𝑦 ≤ 𝑀 , 𝑀 , 𝑦 ) ) ∈ ( ℤ≥ “ 𝑍 ) ) | |
| 25 | 16 18 23 24 | mp3an12i | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑦 ∈ ℤ ) → ( ℤ≥ ‘ if ( 𝑦 ≤ 𝑀 , 𝑀 , 𝑦 ) ) ∈ ( ℤ≥ “ 𝑍 ) ) |
| 26 | 14 25 | eqeltrd | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑦 ∈ ℤ ) → ( ( ℤ≥ ‘ 𝑦 ) ∩ 𝑍 ) ∈ ( ℤ≥ “ 𝑍 ) ) |
| 27 | 26 | ralrimiva | ⊢ ( 𝑀 ∈ ℤ → ∀ 𝑦 ∈ ℤ ( ( ℤ≥ ‘ 𝑦 ) ∩ 𝑍 ) ∈ ( ℤ≥ “ 𝑍 ) ) |
| 28 | ineq1 | ⊢ ( 𝑥 = ( ℤ≥ ‘ 𝑦 ) → ( 𝑥 ∩ 𝑍 ) = ( ( ℤ≥ ‘ 𝑦 ) ∩ 𝑍 ) ) | |
| 29 | 28 | eleq1d | ⊢ ( 𝑥 = ( ℤ≥ ‘ 𝑦 ) → ( ( 𝑥 ∩ 𝑍 ) ∈ ( ℤ≥ “ 𝑍 ) ↔ ( ( ℤ≥ ‘ 𝑦 ) ∩ 𝑍 ) ∈ ( ℤ≥ “ 𝑍 ) ) ) |
| 30 | 29 | ralrn | ⊢ ( ℤ≥ Fn ℤ → ( ∀ 𝑥 ∈ ran ℤ≥ ( 𝑥 ∩ 𝑍 ) ∈ ( ℤ≥ “ 𝑍 ) ↔ ∀ 𝑦 ∈ ℤ ( ( ℤ≥ ‘ 𝑦 ) ∩ 𝑍 ) ∈ ( ℤ≥ “ 𝑍 ) ) ) |
| 31 | 16 30 | ax-mp | ⊢ ( ∀ 𝑥 ∈ ran ℤ≥ ( 𝑥 ∩ 𝑍 ) ∈ ( ℤ≥ “ 𝑍 ) ↔ ∀ 𝑦 ∈ ℤ ( ( ℤ≥ ‘ 𝑦 ) ∩ 𝑍 ) ∈ ( ℤ≥ “ 𝑍 ) ) |
| 32 | 27 31 | sylibr | ⊢ ( 𝑀 ∈ ℤ → ∀ 𝑥 ∈ ran ℤ≥ ( 𝑥 ∩ 𝑍 ) ∈ ( ℤ≥ “ 𝑍 ) ) |
| 33 | eqid | ⊢ ( 𝑥 ∈ ran ℤ≥ ↦ ( 𝑥 ∩ 𝑍 ) ) = ( 𝑥 ∈ ran ℤ≥ ↦ ( 𝑥 ∩ 𝑍 ) ) | |
| 34 | 33 | fmpt | ⊢ ( ∀ 𝑥 ∈ ran ℤ≥ ( 𝑥 ∩ 𝑍 ) ∈ ( ℤ≥ “ 𝑍 ) ↔ ( 𝑥 ∈ ran ℤ≥ ↦ ( 𝑥 ∩ 𝑍 ) ) : ran ℤ≥ ⟶ ( ℤ≥ “ 𝑍 ) ) |
| 35 | 32 34 | sylib | ⊢ ( 𝑀 ∈ ℤ → ( 𝑥 ∈ ran ℤ≥ ↦ ( 𝑥 ∩ 𝑍 ) ) : ran ℤ≥ ⟶ ( ℤ≥ “ 𝑍 ) ) |
| 36 | 35 | frnd | ⊢ ( 𝑀 ∈ ℤ → ran ( 𝑥 ∈ ran ℤ≥ ↦ ( 𝑥 ∩ 𝑍 ) ) ⊆ ( ℤ≥ “ 𝑍 ) ) |
| 37 | 10 36 | eqsstrid | ⊢ ( 𝑀 ∈ ℤ → ( ran ℤ≥ ↾t 𝑍 ) ⊆ ( ℤ≥ “ 𝑍 ) ) |
| 38 | 1 | uztrn2 | ⊢ ( ( 𝑥 ∈ 𝑍 ∧ 𝑦 ∈ ( ℤ≥ ‘ 𝑥 ) ) → 𝑦 ∈ 𝑍 ) |
| 39 | 38 | ex | ⊢ ( 𝑥 ∈ 𝑍 → ( 𝑦 ∈ ( ℤ≥ ‘ 𝑥 ) → 𝑦 ∈ 𝑍 ) ) |
| 40 | 39 | ssrdv | ⊢ ( 𝑥 ∈ 𝑍 → ( ℤ≥ ‘ 𝑥 ) ⊆ 𝑍 ) |
| 41 | 40 | adantl | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑥 ∈ 𝑍 ) → ( ℤ≥ ‘ 𝑥 ) ⊆ 𝑍 ) |
| 42 | dfss2 | ⊢ ( ( ℤ≥ ‘ 𝑥 ) ⊆ 𝑍 ↔ ( ( ℤ≥ ‘ 𝑥 ) ∩ 𝑍 ) = ( ℤ≥ ‘ 𝑥 ) ) | |
| 43 | 41 42 | sylib | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑥 ∈ 𝑍 ) → ( ( ℤ≥ ‘ 𝑥 ) ∩ 𝑍 ) = ( ℤ≥ ‘ 𝑥 ) ) |
| 44 | 18 | sseli | ⊢ ( 𝑥 ∈ 𝑍 → 𝑥 ∈ ℤ ) |
| 45 | 44 | adantl | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑥 ∈ 𝑍 ) → 𝑥 ∈ ℤ ) |
| 46 | fnfvelrn | ⊢ ( ( ℤ≥ Fn ℤ ∧ 𝑥 ∈ ℤ ) → ( ℤ≥ ‘ 𝑥 ) ∈ ran ℤ≥ ) | |
| 47 | 16 45 46 | sylancr | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑥 ∈ 𝑍 ) → ( ℤ≥ ‘ 𝑥 ) ∈ ran ℤ≥ ) |
| 48 | elrestr | ⊢ ( ( ran ℤ≥ ∈ V ∧ 𝑍 ∈ V ∧ ( ℤ≥ ‘ 𝑥 ) ∈ ran ℤ≥ ) → ( ( ℤ≥ ‘ 𝑥 ) ∩ 𝑍 ) ∈ ( ran ℤ≥ ↾t 𝑍 ) ) | |
| 49 | 7 8 47 48 | mp3an12i | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑥 ∈ 𝑍 ) → ( ( ℤ≥ ‘ 𝑥 ) ∩ 𝑍 ) ∈ ( ran ℤ≥ ↾t 𝑍 ) ) |
| 50 | 43 49 | eqeltrrd | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑥 ∈ 𝑍 ) → ( ℤ≥ ‘ 𝑥 ) ∈ ( ran ℤ≥ ↾t 𝑍 ) ) |
| 51 | 50 | ralrimiva | ⊢ ( 𝑀 ∈ ℤ → ∀ 𝑥 ∈ 𝑍 ( ℤ≥ ‘ 𝑥 ) ∈ ( ran ℤ≥ ↾t 𝑍 ) ) |
| 52 | ffun | ⊢ ( ℤ≥ : ℤ ⟶ 𝒫 ℤ → Fun ℤ≥ ) | |
| 53 | 4 52 | ax-mp | ⊢ Fun ℤ≥ |
| 54 | 4 | fdmi | ⊢ dom ℤ≥ = ℤ |
| 55 | 18 54 | sseqtrri | ⊢ 𝑍 ⊆ dom ℤ≥ |
| 56 | funimass4 | ⊢ ( ( Fun ℤ≥ ∧ 𝑍 ⊆ dom ℤ≥ ) → ( ( ℤ≥ “ 𝑍 ) ⊆ ( ran ℤ≥ ↾t 𝑍 ) ↔ ∀ 𝑥 ∈ 𝑍 ( ℤ≥ ‘ 𝑥 ) ∈ ( ran ℤ≥ ↾t 𝑍 ) ) ) | |
| 57 | 53 55 56 | mp2an | ⊢ ( ( ℤ≥ “ 𝑍 ) ⊆ ( ran ℤ≥ ↾t 𝑍 ) ↔ ∀ 𝑥 ∈ 𝑍 ( ℤ≥ ‘ 𝑥 ) ∈ ( ran ℤ≥ ↾t 𝑍 ) ) |
| 58 | 51 57 | sylibr | ⊢ ( 𝑀 ∈ ℤ → ( ℤ≥ “ 𝑍 ) ⊆ ( ran ℤ≥ ↾t 𝑍 ) ) |
| 59 | 37 58 | eqssd | ⊢ ( 𝑀 ∈ ℤ → ( ran ℤ≥ ↾t 𝑍 ) = ( ℤ≥ “ 𝑍 ) ) |