This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The restriction of the set of upper sets of integers to an upper set of integers is the set of upper sets of integers based at a point above the cutoff. (Contributed by Mario Carneiro, 13-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | uzfbas.1 | |- Z = ( ZZ>= ` M ) |
|
| Assertion | uzrest | |- ( M e. ZZ -> ( ran ZZ>= |`t Z ) = ( ZZ>= " Z ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uzfbas.1 | |- Z = ( ZZ>= ` M ) |
|
| 2 | zex | |- ZZ e. _V |
|
| 3 | 2 | pwex | |- ~P ZZ e. _V |
| 4 | uzf | |- ZZ>= : ZZ --> ~P ZZ |
|
| 5 | frn | |- ( ZZ>= : ZZ --> ~P ZZ -> ran ZZ>= C_ ~P ZZ ) |
|
| 6 | 4 5 | ax-mp | |- ran ZZ>= C_ ~P ZZ |
| 7 | 3 6 | ssexi | |- ran ZZ>= e. _V |
| 8 | 1 | fvexi | |- Z e. _V |
| 9 | restval | |- ( ( ran ZZ>= e. _V /\ Z e. _V ) -> ( ran ZZ>= |`t Z ) = ran ( x e. ran ZZ>= |-> ( x i^i Z ) ) ) |
|
| 10 | 7 8 9 | mp2an | |- ( ran ZZ>= |`t Z ) = ran ( x e. ran ZZ>= |-> ( x i^i Z ) ) |
| 11 | 1 | ineq2i | |- ( ( ZZ>= ` y ) i^i Z ) = ( ( ZZ>= ` y ) i^i ( ZZ>= ` M ) ) |
| 12 | uzin | |- ( ( y e. ZZ /\ M e. ZZ ) -> ( ( ZZ>= ` y ) i^i ( ZZ>= ` M ) ) = ( ZZ>= ` if ( y <_ M , M , y ) ) ) |
|
| 13 | 12 | ancoms | |- ( ( M e. ZZ /\ y e. ZZ ) -> ( ( ZZ>= ` y ) i^i ( ZZ>= ` M ) ) = ( ZZ>= ` if ( y <_ M , M , y ) ) ) |
| 14 | 11 13 | eqtrid | |- ( ( M e. ZZ /\ y e. ZZ ) -> ( ( ZZ>= ` y ) i^i Z ) = ( ZZ>= ` if ( y <_ M , M , y ) ) ) |
| 15 | ffn | |- ( ZZ>= : ZZ --> ~P ZZ -> ZZ>= Fn ZZ ) |
|
| 16 | 4 15 | ax-mp | |- ZZ>= Fn ZZ |
| 17 | uzssz | |- ( ZZ>= ` M ) C_ ZZ |
|
| 18 | 1 17 | eqsstri | |- Z C_ ZZ |
| 19 | ifcl | |- ( ( M e. ZZ /\ y e. ZZ ) -> if ( y <_ M , M , y ) e. ZZ ) |
|
| 20 | uzid | |- ( if ( y <_ M , M , y ) e. ZZ -> if ( y <_ M , M , y ) e. ( ZZ>= ` if ( y <_ M , M , y ) ) ) |
|
| 21 | 19 20 | syl | |- ( ( M e. ZZ /\ y e. ZZ ) -> if ( y <_ M , M , y ) e. ( ZZ>= ` if ( y <_ M , M , y ) ) ) |
| 22 | 21 14 | eleqtrrd | |- ( ( M e. ZZ /\ y e. ZZ ) -> if ( y <_ M , M , y ) e. ( ( ZZ>= ` y ) i^i Z ) ) |
| 23 | 22 | elin2d | |- ( ( M e. ZZ /\ y e. ZZ ) -> if ( y <_ M , M , y ) e. Z ) |
| 24 | fnfvima | |- ( ( ZZ>= Fn ZZ /\ Z C_ ZZ /\ if ( y <_ M , M , y ) e. Z ) -> ( ZZ>= ` if ( y <_ M , M , y ) ) e. ( ZZ>= " Z ) ) |
|
| 25 | 16 18 23 24 | mp3an12i | |- ( ( M e. ZZ /\ y e. ZZ ) -> ( ZZ>= ` if ( y <_ M , M , y ) ) e. ( ZZ>= " Z ) ) |
| 26 | 14 25 | eqeltrd | |- ( ( M e. ZZ /\ y e. ZZ ) -> ( ( ZZ>= ` y ) i^i Z ) e. ( ZZ>= " Z ) ) |
| 27 | 26 | ralrimiva | |- ( M e. ZZ -> A. y e. ZZ ( ( ZZ>= ` y ) i^i Z ) e. ( ZZ>= " Z ) ) |
| 28 | ineq1 | |- ( x = ( ZZ>= ` y ) -> ( x i^i Z ) = ( ( ZZ>= ` y ) i^i Z ) ) |
|
| 29 | 28 | eleq1d | |- ( x = ( ZZ>= ` y ) -> ( ( x i^i Z ) e. ( ZZ>= " Z ) <-> ( ( ZZ>= ` y ) i^i Z ) e. ( ZZ>= " Z ) ) ) |
| 30 | 29 | ralrn | |- ( ZZ>= Fn ZZ -> ( A. x e. ran ZZ>= ( x i^i Z ) e. ( ZZ>= " Z ) <-> A. y e. ZZ ( ( ZZ>= ` y ) i^i Z ) e. ( ZZ>= " Z ) ) ) |
| 31 | 16 30 | ax-mp | |- ( A. x e. ran ZZ>= ( x i^i Z ) e. ( ZZ>= " Z ) <-> A. y e. ZZ ( ( ZZ>= ` y ) i^i Z ) e. ( ZZ>= " Z ) ) |
| 32 | 27 31 | sylibr | |- ( M e. ZZ -> A. x e. ran ZZ>= ( x i^i Z ) e. ( ZZ>= " Z ) ) |
| 33 | eqid | |- ( x e. ran ZZ>= |-> ( x i^i Z ) ) = ( x e. ran ZZ>= |-> ( x i^i Z ) ) |
|
| 34 | 33 | fmpt | |- ( A. x e. ran ZZ>= ( x i^i Z ) e. ( ZZ>= " Z ) <-> ( x e. ran ZZ>= |-> ( x i^i Z ) ) : ran ZZ>= --> ( ZZ>= " Z ) ) |
| 35 | 32 34 | sylib | |- ( M e. ZZ -> ( x e. ran ZZ>= |-> ( x i^i Z ) ) : ran ZZ>= --> ( ZZ>= " Z ) ) |
| 36 | 35 | frnd | |- ( M e. ZZ -> ran ( x e. ran ZZ>= |-> ( x i^i Z ) ) C_ ( ZZ>= " Z ) ) |
| 37 | 10 36 | eqsstrid | |- ( M e. ZZ -> ( ran ZZ>= |`t Z ) C_ ( ZZ>= " Z ) ) |
| 38 | 1 | uztrn2 | |- ( ( x e. Z /\ y e. ( ZZ>= ` x ) ) -> y e. Z ) |
| 39 | 38 | ex | |- ( x e. Z -> ( y e. ( ZZ>= ` x ) -> y e. Z ) ) |
| 40 | 39 | ssrdv | |- ( x e. Z -> ( ZZ>= ` x ) C_ Z ) |
| 41 | 40 | adantl | |- ( ( M e. ZZ /\ x e. Z ) -> ( ZZ>= ` x ) C_ Z ) |
| 42 | dfss2 | |- ( ( ZZ>= ` x ) C_ Z <-> ( ( ZZ>= ` x ) i^i Z ) = ( ZZ>= ` x ) ) |
|
| 43 | 41 42 | sylib | |- ( ( M e. ZZ /\ x e. Z ) -> ( ( ZZ>= ` x ) i^i Z ) = ( ZZ>= ` x ) ) |
| 44 | 18 | sseli | |- ( x e. Z -> x e. ZZ ) |
| 45 | 44 | adantl | |- ( ( M e. ZZ /\ x e. Z ) -> x e. ZZ ) |
| 46 | fnfvelrn | |- ( ( ZZ>= Fn ZZ /\ x e. ZZ ) -> ( ZZ>= ` x ) e. ran ZZ>= ) |
|
| 47 | 16 45 46 | sylancr | |- ( ( M e. ZZ /\ x e. Z ) -> ( ZZ>= ` x ) e. ran ZZ>= ) |
| 48 | elrestr | |- ( ( ran ZZ>= e. _V /\ Z e. _V /\ ( ZZ>= ` x ) e. ran ZZ>= ) -> ( ( ZZ>= ` x ) i^i Z ) e. ( ran ZZ>= |`t Z ) ) |
|
| 49 | 7 8 47 48 | mp3an12i | |- ( ( M e. ZZ /\ x e. Z ) -> ( ( ZZ>= ` x ) i^i Z ) e. ( ran ZZ>= |`t Z ) ) |
| 50 | 43 49 | eqeltrrd | |- ( ( M e. ZZ /\ x e. Z ) -> ( ZZ>= ` x ) e. ( ran ZZ>= |`t Z ) ) |
| 51 | 50 | ralrimiva | |- ( M e. ZZ -> A. x e. Z ( ZZ>= ` x ) e. ( ran ZZ>= |`t Z ) ) |
| 52 | ffun | |- ( ZZ>= : ZZ --> ~P ZZ -> Fun ZZ>= ) |
|
| 53 | 4 52 | ax-mp | |- Fun ZZ>= |
| 54 | 4 | fdmi | |- dom ZZ>= = ZZ |
| 55 | 18 54 | sseqtrri | |- Z C_ dom ZZ>= |
| 56 | funimass4 | |- ( ( Fun ZZ>= /\ Z C_ dom ZZ>= ) -> ( ( ZZ>= " Z ) C_ ( ran ZZ>= |`t Z ) <-> A. x e. Z ( ZZ>= ` x ) e. ( ran ZZ>= |`t Z ) ) ) |
|
| 57 | 53 55 56 | mp2an | |- ( ( ZZ>= " Z ) C_ ( ran ZZ>= |`t Z ) <-> A. x e. Z ( ZZ>= ` x ) e. ( ran ZZ>= |`t Z ) ) |
| 58 | 51 57 | sylibr | |- ( M e. ZZ -> ( ZZ>= " Z ) C_ ( ran ZZ>= |`t Z ) ) |
| 59 | 37 58 | eqssd | |- ( M e. ZZ -> ( ran ZZ>= |`t Z ) = ( ZZ>= " Z ) ) |