This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If two intersecting sets A and B are both small in V , their union is small in ( V ^ 2 ) . Proposition 1 of BourbakiTop1 p. II.12. This proposition actually does not require any axiom of the definition of uniform structures. (Contributed by Thierry Arnoux, 17-Nov-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ustund.1 | |- ( ph -> ( A X. A ) C_ V ) |
|
| ustund.2 | |- ( ph -> ( B X. B ) C_ V ) |
||
| ustund.3 | |- ( ph -> ( A i^i B ) =/= (/) ) |
||
| Assertion | ustund | |- ( ph -> ( ( A u. B ) X. ( A u. B ) ) C_ ( V o. V ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ustund.1 | |- ( ph -> ( A X. A ) C_ V ) |
|
| 2 | ustund.2 | |- ( ph -> ( B X. B ) C_ V ) |
|
| 3 | ustund.3 | |- ( ph -> ( A i^i B ) =/= (/) ) |
|
| 4 | xpco | |- ( ( A i^i B ) =/= (/) -> ( ( ( A i^i B ) X. ( A u. B ) ) o. ( ( A u. B ) X. ( A i^i B ) ) ) = ( ( A u. B ) X. ( A u. B ) ) ) |
|
| 5 | 3 4 | syl | |- ( ph -> ( ( ( A i^i B ) X. ( A u. B ) ) o. ( ( A u. B ) X. ( A i^i B ) ) ) = ( ( A u. B ) X. ( A u. B ) ) ) |
| 6 | xpundi | |- ( ( A i^i B ) X. ( A u. B ) ) = ( ( ( A i^i B ) X. A ) u. ( ( A i^i B ) X. B ) ) |
|
| 7 | xpindir | |- ( ( A i^i B ) X. A ) = ( ( A X. A ) i^i ( B X. A ) ) |
|
| 8 | inss1 | |- ( ( A X. A ) i^i ( B X. A ) ) C_ ( A X. A ) |
|
| 9 | 8 1 | sstrid | |- ( ph -> ( ( A X. A ) i^i ( B X. A ) ) C_ V ) |
| 10 | 7 9 | eqsstrid | |- ( ph -> ( ( A i^i B ) X. A ) C_ V ) |
| 11 | xpindir | |- ( ( A i^i B ) X. B ) = ( ( A X. B ) i^i ( B X. B ) ) |
|
| 12 | inss2 | |- ( ( A X. B ) i^i ( B X. B ) ) C_ ( B X. B ) |
|
| 13 | 12 2 | sstrid | |- ( ph -> ( ( A X. B ) i^i ( B X. B ) ) C_ V ) |
| 14 | 11 13 | eqsstrid | |- ( ph -> ( ( A i^i B ) X. B ) C_ V ) |
| 15 | 10 14 | unssd | |- ( ph -> ( ( ( A i^i B ) X. A ) u. ( ( A i^i B ) X. B ) ) C_ V ) |
| 16 | 6 15 | eqsstrid | |- ( ph -> ( ( A i^i B ) X. ( A u. B ) ) C_ V ) |
| 17 | xpundir | |- ( ( A u. B ) X. ( A i^i B ) ) = ( ( A X. ( A i^i B ) ) u. ( B X. ( A i^i B ) ) ) |
|
| 18 | xpindi | |- ( A X. ( A i^i B ) ) = ( ( A X. A ) i^i ( A X. B ) ) |
|
| 19 | inss1 | |- ( ( A X. A ) i^i ( A X. B ) ) C_ ( A X. A ) |
|
| 20 | 19 1 | sstrid | |- ( ph -> ( ( A X. A ) i^i ( A X. B ) ) C_ V ) |
| 21 | 18 20 | eqsstrid | |- ( ph -> ( A X. ( A i^i B ) ) C_ V ) |
| 22 | xpindi | |- ( B X. ( A i^i B ) ) = ( ( B X. A ) i^i ( B X. B ) ) |
|
| 23 | inss2 | |- ( ( B X. A ) i^i ( B X. B ) ) C_ ( B X. B ) |
|
| 24 | 23 2 | sstrid | |- ( ph -> ( ( B X. A ) i^i ( B X. B ) ) C_ V ) |
| 25 | 22 24 | eqsstrid | |- ( ph -> ( B X. ( A i^i B ) ) C_ V ) |
| 26 | 21 25 | unssd | |- ( ph -> ( ( A X. ( A i^i B ) ) u. ( B X. ( A i^i B ) ) ) C_ V ) |
| 27 | 17 26 | eqsstrid | |- ( ph -> ( ( A u. B ) X. ( A i^i B ) ) C_ V ) |
| 28 | 16 27 | coss12d | |- ( ph -> ( ( ( A i^i B ) X. ( A u. B ) ) o. ( ( A u. B ) X. ( A i^i B ) ) ) C_ ( V o. V ) ) |
| 29 | 5 28 | eqsstrrd | |- ( ph -> ( ( A u. B ) X. ( A u. B ) ) C_ ( V o. V ) ) |