This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Any point A is near enough to itself. (Contributed by Thierry Arnoux, 18-Nov-2017)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ustelimasn | ⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑉 ∈ 𝑈 ∧ 𝐴 ∈ 𝑋 ) → 𝐴 ∈ ( 𝑉 “ { 𝐴 } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp3 | ⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑉 ∈ 𝑈 ∧ 𝐴 ∈ 𝑋 ) → 𝐴 ∈ 𝑋 ) | |
| 2 | ustdiag | ⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑉 ∈ 𝑈 ) → ( I ↾ 𝑋 ) ⊆ 𝑉 ) | |
| 3 | 2 | 3adant3 | ⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑉 ∈ 𝑈 ∧ 𝐴 ∈ 𝑋 ) → ( I ↾ 𝑋 ) ⊆ 𝑉 ) |
| 4 | opelidres | ⊢ ( 𝐴 ∈ 𝑋 → ( 〈 𝐴 , 𝐴 〉 ∈ ( I ↾ 𝑋 ) ↔ 𝐴 ∈ 𝑋 ) ) | |
| 5 | 4 | ibir | ⊢ ( 𝐴 ∈ 𝑋 → 〈 𝐴 , 𝐴 〉 ∈ ( I ↾ 𝑋 ) ) |
| 6 | 5 | 3ad2ant3 | ⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑉 ∈ 𝑈 ∧ 𝐴 ∈ 𝑋 ) → 〈 𝐴 , 𝐴 〉 ∈ ( I ↾ 𝑋 ) ) |
| 7 | 3 6 | sseldd | ⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑉 ∈ 𝑈 ∧ 𝐴 ∈ 𝑋 ) → 〈 𝐴 , 𝐴 〉 ∈ 𝑉 ) |
| 8 | elimasng | ⊢ ( ( 𝐴 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ) → ( 𝐴 ∈ ( 𝑉 “ { 𝐴 } ) ↔ 〈 𝐴 , 𝐴 〉 ∈ 𝑉 ) ) | |
| 9 | 8 | anidms | ⊢ ( 𝐴 ∈ 𝑋 → ( 𝐴 ∈ ( 𝑉 “ { 𝐴 } ) ↔ 〈 𝐴 , 𝐴 〉 ∈ 𝑉 ) ) |
| 10 | 9 | biimpar | ⊢ ( ( 𝐴 ∈ 𝑋 ∧ 〈 𝐴 , 𝐴 〉 ∈ 𝑉 ) → 𝐴 ∈ ( 𝑉 “ { 𝐴 } ) ) |
| 11 | 1 7 10 | syl2anc | ⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑉 ∈ 𝑈 ∧ 𝐴 ∈ 𝑋 ) → 𝐴 ∈ ( 𝑉 “ { 𝐴 } ) ) |