This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Subset deduction for composition of two classes. (Contributed by RP, 24-Dec-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | coss12d.a | ⊢ ( 𝜑 → 𝐴 ⊆ 𝐵 ) | |
| coss12d.c | ⊢ ( 𝜑 → 𝐶 ⊆ 𝐷 ) | ||
| Assertion | coss12d | ⊢ ( 𝜑 → ( 𝐴 ∘ 𝐶 ) ⊆ ( 𝐵 ∘ 𝐷 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | coss12d.a | ⊢ ( 𝜑 → 𝐴 ⊆ 𝐵 ) | |
| 2 | coss12d.c | ⊢ ( 𝜑 → 𝐶 ⊆ 𝐷 ) | |
| 3 | 2 | ssbrd | ⊢ ( 𝜑 → ( 𝑥 𝐶 𝑦 → 𝑥 𝐷 𝑦 ) ) |
| 4 | 1 | ssbrd | ⊢ ( 𝜑 → ( 𝑦 𝐴 𝑧 → 𝑦 𝐵 𝑧 ) ) |
| 5 | 3 4 | anim12d | ⊢ ( 𝜑 → ( ( 𝑥 𝐶 𝑦 ∧ 𝑦 𝐴 𝑧 ) → ( 𝑥 𝐷 𝑦 ∧ 𝑦 𝐵 𝑧 ) ) ) |
| 6 | 5 | eximdv | ⊢ ( 𝜑 → ( ∃ 𝑦 ( 𝑥 𝐶 𝑦 ∧ 𝑦 𝐴 𝑧 ) → ∃ 𝑦 ( 𝑥 𝐷 𝑦 ∧ 𝑦 𝐵 𝑧 ) ) ) |
| 7 | 6 | ssopab2dv | ⊢ ( 𝜑 → { 〈 𝑥 , 𝑧 〉 ∣ ∃ 𝑦 ( 𝑥 𝐶 𝑦 ∧ 𝑦 𝐴 𝑧 ) } ⊆ { 〈 𝑥 , 𝑧 〉 ∣ ∃ 𝑦 ( 𝑥 𝐷 𝑦 ∧ 𝑦 𝐵 𝑧 ) } ) |
| 8 | df-co | ⊢ ( 𝐴 ∘ 𝐶 ) = { 〈 𝑥 , 𝑧 〉 ∣ ∃ 𝑦 ( 𝑥 𝐶 𝑦 ∧ 𝑦 𝐴 𝑧 ) } | |
| 9 | df-co | ⊢ ( 𝐵 ∘ 𝐷 ) = { 〈 𝑥 , 𝑧 〉 ∣ ∃ 𝑦 ( 𝑥 𝐷 𝑦 ∧ 𝑦 𝐵 𝑧 ) } | |
| 10 | 7 8 9 | 3sstr4g | ⊢ ( 𝜑 → ( 𝐴 ∘ 𝐶 ) ⊆ ( 𝐵 ∘ 𝐷 ) ) |