This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: In an uniform structure, for any entourage V , there exists a symmetrical entourage smaller than half V . (Contributed by Thierry Arnoux, 16-Jan-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ustex2sym | ⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑉 ∈ 𝑈 ) → ∃ 𝑤 ∈ 𝑈 ( ◡ 𝑤 = 𝑤 ∧ ( 𝑤 ∘ 𝑤 ) ⊆ 𝑉 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ustexsym | ⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑣 ∈ 𝑈 ) → ∃ 𝑤 ∈ 𝑈 ( ◡ 𝑤 = 𝑤 ∧ 𝑤 ⊆ 𝑣 ) ) | |
| 2 | 1 | ad4ant13 | ⊢ ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑉 ∈ 𝑈 ) ∧ 𝑣 ∈ 𝑈 ) ∧ ( 𝑣 ∘ 𝑣 ) ⊆ 𝑉 ) → ∃ 𝑤 ∈ 𝑈 ( ◡ 𝑤 = 𝑤 ∧ 𝑤 ⊆ 𝑣 ) ) |
| 3 | simprl | ⊢ ( ( ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑉 ∈ 𝑈 ) ∧ 𝑣 ∈ 𝑈 ) ∧ ( 𝑣 ∘ 𝑣 ) ⊆ 𝑉 ) ∧ 𝑤 ∈ 𝑈 ) ∧ ( ◡ 𝑤 = 𝑤 ∧ 𝑤 ⊆ 𝑣 ) ) → ◡ 𝑤 = 𝑤 ) | |
| 4 | coss1 | ⊢ ( 𝑤 ⊆ 𝑣 → ( 𝑤 ∘ 𝑤 ) ⊆ ( 𝑣 ∘ 𝑤 ) ) | |
| 5 | coss2 | ⊢ ( 𝑤 ⊆ 𝑣 → ( 𝑣 ∘ 𝑤 ) ⊆ ( 𝑣 ∘ 𝑣 ) ) | |
| 6 | 4 5 | sstrd | ⊢ ( 𝑤 ⊆ 𝑣 → ( 𝑤 ∘ 𝑤 ) ⊆ ( 𝑣 ∘ 𝑣 ) ) |
| 7 | 6 | ad2antll | ⊢ ( ( ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑉 ∈ 𝑈 ) ∧ 𝑣 ∈ 𝑈 ) ∧ ( 𝑣 ∘ 𝑣 ) ⊆ 𝑉 ) ∧ 𝑤 ∈ 𝑈 ) ∧ ( ◡ 𝑤 = 𝑤 ∧ 𝑤 ⊆ 𝑣 ) ) → ( 𝑤 ∘ 𝑤 ) ⊆ ( 𝑣 ∘ 𝑣 ) ) |
| 8 | simpllr | ⊢ ( ( ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑉 ∈ 𝑈 ) ∧ 𝑣 ∈ 𝑈 ) ∧ ( 𝑣 ∘ 𝑣 ) ⊆ 𝑉 ) ∧ 𝑤 ∈ 𝑈 ) ∧ ( ◡ 𝑤 = 𝑤 ∧ 𝑤 ⊆ 𝑣 ) ) → ( 𝑣 ∘ 𝑣 ) ⊆ 𝑉 ) | |
| 9 | 7 8 | sstrd | ⊢ ( ( ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑉 ∈ 𝑈 ) ∧ 𝑣 ∈ 𝑈 ) ∧ ( 𝑣 ∘ 𝑣 ) ⊆ 𝑉 ) ∧ 𝑤 ∈ 𝑈 ) ∧ ( ◡ 𝑤 = 𝑤 ∧ 𝑤 ⊆ 𝑣 ) ) → ( 𝑤 ∘ 𝑤 ) ⊆ 𝑉 ) |
| 10 | 3 9 | jca | ⊢ ( ( ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑉 ∈ 𝑈 ) ∧ 𝑣 ∈ 𝑈 ) ∧ ( 𝑣 ∘ 𝑣 ) ⊆ 𝑉 ) ∧ 𝑤 ∈ 𝑈 ) ∧ ( ◡ 𝑤 = 𝑤 ∧ 𝑤 ⊆ 𝑣 ) ) → ( ◡ 𝑤 = 𝑤 ∧ ( 𝑤 ∘ 𝑤 ) ⊆ 𝑉 ) ) |
| 11 | 10 | ex | ⊢ ( ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑉 ∈ 𝑈 ) ∧ 𝑣 ∈ 𝑈 ) ∧ ( 𝑣 ∘ 𝑣 ) ⊆ 𝑉 ) ∧ 𝑤 ∈ 𝑈 ) → ( ( ◡ 𝑤 = 𝑤 ∧ 𝑤 ⊆ 𝑣 ) → ( ◡ 𝑤 = 𝑤 ∧ ( 𝑤 ∘ 𝑤 ) ⊆ 𝑉 ) ) ) |
| 12 | 11 | reximdva | ⊢ ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑉 ∈ 𝑈 ) ∧ 𝑣 ∈ 𝑈 ) ∧ ( 𝑣 ∘ 𝑣 ) ⊆ 𝑉 ) → ( ∃ 𝑤 ∈ 𝑈 ( ◡ 𝑤 = 𝑤 ∧ 𝑤 ⊆ 𝑣 ) → ∃ 𝑤 ∈ 𝑈 ( ◡ 𝑤 = 𝑤 ∧ ( 𝑤 ∘ 𝑤 ) ⊆ 𝑉 ) ) ) |
| 13 | 2 12 | mpd | ⊢ ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑉 ∈ 𝑈 ) ∧ 𝑣 ∈ 𝑈 ) ∧ ( 𝑣 ∘ 𝑣 ) ⊆ 𝑉 ) → ∃ 𝑤 ∈ 𝑈 ( ◡ 𝑤 = 𝑤 ∧ ( 𝑤 ∘ 𝑤 ) ⊆ 𝑉 ) ) |
| 14 | ustexhalf | ⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑉 ∈ 𝑈 ) → ∃ 𝑣 ∈ 𝑈 ( 𝑣 ∘ 𝑣 ) ⊆ 𝑉 ) | |
| 15 | 13 14 | r19.29a | ⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑉 ∈ 𝑈 ) → ∃ 𝑤 ∈ 𝑈 ( ◡ 𝑤 = 𝑤 ∧ ( 𝑤 ∘ 𝑤 ) ⊆ 𝑉 ) ) |