This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: In an uniform structure, any entourage V is a subset of its composition with itself. (Contributed by Thierry Arnoux, 5-Jan-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ustssco | ⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑉 ∈ 𝑈 ) → 𝑉 ⊆ ( 𝑉 ∘ 𝑉 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssun1 | ⊢ 𝑉 ⊆ ( 𝑉 ∪ ( 𝑉 ∘ 𝑉 ) ) | |
| 2 | coires1 | ⊢ ( 𝑉 ∘ ( I ↾ 𝑋 ) ) = ( 𝑉 ↾ 𝑋 ) | |
| 3 | ustrel | ⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑉 ∈ 𝑈 ) → Rel 𝑉 ) | |
| 4 | ustssxp | ⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑉 ∈ 𝑈 ) → 𝑉 ⊆ ( 𝑋 × 𝑋 ) ) | |
| 5 | dmss | ⊢ ( 𝑉 ⊆ ( 𝑋 × 𝑋 ) → dom 𝑉 ⊆ dom ( 𝑋 × 𝑋 ) ) | |
| 6 | 4 5 | syl | ⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑉 ∈ 𝑈 ) → dom 𝑉 ⊆ dom ( 𝑋 × 𝑋 ) ) |
| 7 | dmxpid | ⊢ dom ( 𝑋 × 𝑋 ) = 𝑋 | |
| 8 | 6 7 | sseqtrdi | ⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑉 ∈ 𝑈 ) → dom 𝑉 ⊆ 𝑋 ) |
| 9 | relssres | ⊢ ( ( Rel 𝑉 ∧ dom 𝑉 ⊆ 𝑋 ) → ( 𝑉 ↾ 𝑋 ) = 𝑉 ) | |
| 10 | 3 8 9 | syl2anc | ⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑉 ∈ 𝑈 ) → ( 𝑉 ↾ 𝑋 ) = 𝑉 ) |
| 11 | 2 10 | eqtrid | ⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑉 ∈ 𝑈 ) → ( 𝑉 ∘ ( I ↾ 𝑋 ) ) = 𝑉 ) |
| 12 | 11 | uneq1d | ⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑉 ∈ 𝑈 ) → ( ( 𝑉 ∘ ( I ↾ 𝑋 ) ) ∪ ( 𝑉 ∘ 𝑉 ) ) = ( 𝑉 ∪ ( 𝑉 ∘ 𝑉 ) ) ) |
| 13 | 1 12 | sseqtrrid | ⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑉 ∈ 𝑈 ) → 𝑉 ⊆ ( ( 𝑉 ∘ ( I ↾ 𝑋 ) ) ∪ ( 𝑉 ∘ 𝑉 ) ) ) |
| 14 | coundi | ⊢ ( 𝑉 ∘ ( ( I ↾ 𝑋 ) ∪ 𝑉 ) ) = ( ( 𝑉 ∘ ( I ↾ 𝑋 ) ) ∪ ( 𝑉 ∘ 𝑉 ) ) | |
| 15 | 13 14 | sseqtrrdi | ⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑉 ∈ 𝑈 ) → 𝑉 ⊆ ( 𝑉 ∘ ( ( I ↾ 𝑋 ) ∪ 𝑉 ) ) ) |
| 16 | ustdiag | ⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑉 ∈ 𝑈 ) → ( I ↾ 𝑋 ) ⊆ 𝑉 ) | |
| 17 | ssequn1 | ⊢ ( ( I ↾ 𝑋 ) ⊆ 𝑉 ↔ ( ( I ↾ 𝑋 ) ∪ 𝑉 ) = 𝑉 ) | |
| 18 | 16 17 | sylib | ⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑉 ∈ 𝑈 ) → ( ( I ↾ 𝑋 ) ∪ 𝑉 ) = 𝑉 ) |
| 19 | 18 | coeq2d | ⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑉 ∈ 𝑈 ) → ( 𝑉 ∘ ( ( I ↾ 𝑋 ) ∪ 𝑉 ) ) = ( 𝑉 ∘ 𝑉 ) ) |
| 20 | 15 19 | sseqtrd | ⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑉 ∈ 𝑈 ) → 𝑉 ⊆ ( 𝑉 ∘ 𝑉 ) ) |