This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Applying the edge function on the converse edge function applied on a pair of a vertex and one of its neighbors is this pair in a simple graph. (Contributed by Alexander van der Vekens, 18-Dec-2017) (Revised by AV, 27-Oct-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | usgrnbcnvfv.i | |- I = ( iEdg ` G ) |
|
| Assertion | usgrnbcnvfv | |- ( ( G e. USGraph /\ N e. ( G NeighbVtx K ) ) -> ( I ` ( `' I ` { K , N } ) ) = { K , N } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | usgrnbcnvfv.i | |- I = ( iEdg ` G ) |
|
| 2 | 1 | usgrf1o | |- ( G e. USGraph -> I : dom I -1-1-onto-> ran I ) |
| 3 | prcom | |- { N , K } = { K , N } |
|
| 4 | eqid | |- ( Edg ` G ) = ( Edg ` G ) |
|
| 5 | 4 | nbusgreledg | |- ( G e. USGraph -> ( N e. ( G NeighbVtx K ) <-> { N , K } e. ( Edg ` G ) ) ) |
| 6 | edgval | |- ( Edg ` G ) = ran ( iEdg ` G ) |
|
| 7 | 1 | eqcomi | |- ( iEdg ` G ) = I |
| 8 | 7 | rneqi | |- ran ( iEdg ` G ) = ran I |
| 9 | 6 8 | eqtri | |- ( Edg ` G ) = ran I |
| 10 | 9 | a1i | |- ( G e. USGraph -> ( Edg ` G ) = ran I ) |
| 11 | 10 | eleq2d | |- ( G e. USGraph -> ( { N , K } e. ( Edg ` G ) <-> { N , K } e. ran I ) ) |
| 12 | 5 11 | bitrd | |- ( G e. USGraph -> ( N e. ( G NeighbVtx K ) <-> { N , K } e. ran I ) ) |
| 13 | 12 | biimpa | |- ( ( G e. USGraph /\ N e. ( G NeighbVtx K ) ) -> { N , K } e. ran I ) |
| 14 | 3 13 | eqeltrrid | |- ( ( G e. USGraph /\ N e. ( G NeighbVtx K ) ) -> { K , N } e. ran I ) |
| 15 | f1ocnvfv2 | |- ( ( I : dom I -1-1-onto-> ran I /\ { K , N } e. ran I ) -> ( I ` ( `' I ` { K , N } ) ) = { K , N } ) |
|
| 16 | 2 14 15 | syl2an2r | |- ( ( G e. USGraph /\ N e. ( G NeighbVtx K ) ) -> ( I ` ( `' I ` { K , N } ) ) = { K , N } ) |