This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: For each neighbor of a vertex there is exactly one edge between the vertex and its neighbor in a simple graph. (Contributed by Alexander van der Vekens, 17-Dec-2017) (Revised by AV, 27-Oct-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | nbusgredgeu.e | ⊢ 𝐸 = ( Edg ‘ 𝐺 ) | |
| Assertion | nbusgredgeu | ⊢ ( ( 𝐺 ∈ USGraph ∧ 𝑀 ∈ ( 𝐺 NeighbVtx 𝑁 ) ) → ∃! 𝑒 ∈ 𝐸 𝑒 = { 𝑀 , 𝑁 } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nbusgredgeu.e | ⊢ 𝐸 = ( Edg ‘ 𝐺 ) | |
| 2 | 1 | nbusgreledg | ⊢ ( 𝐺 ∈ USGraph → ( 𝑀 ∈ ( 𝐺 NeighbVtx 𝑁 ) ↔ { 𝑀 , 𝑁 } ∈ 𝐸 ) ) |
| 3 | 2 | biimpa | ⊢ ( ( 𝐺 ∈ USGraph ∧ 𝑀 ∈ ( 𝐺 NeighbVtx 𝑁 ) ) → { 𝑀 , 𝑁 } ∈ 𝐸 ) |
| 4 | eqeq1 | ⊢ ( 𝑒 = { 𝑀 , 𝑁 } → ( 𝑒 = { 𝑀 , 𝑁 } ↔ { 𝑀 , 𝑁 } = { 𝑀 , 𝑁 } ) ) | |
| 5 | 4 | adantl | ⊢ ( ( ( 𝐺 ∈ USGraph ∧ 𝑀 ∈ ( 𝐺 NeighbVtx 𝑁 ) ) ∧ 𝑒 = { 𝑀 , 𝑁 } ) → ( 𝑒 = { 𝑀 , 𝑁 } ↔ { 𝑀 , 𝑁 } = { 𝑀 , 𝑁 } ) ) |
| 6 | eqidd | ⊢ ( ( 𝐺 ∈ USGraph ∧ 𝑀 ∈ ( 𝐺 NeighbVtx 𝑁 ) ) → { 𝑀 , 𝑁 } = { 𝑀 , 𝑁 } ) | |
| 7 | 3 5 6 | rspcedvd | ⊢ ( ( 𝐺 ∈ USGraph ∧ 𝑀 ∈ ( 𝐺 NeighbVtx 𝑁 ) ) → ∃ 𝑒 ∈ 𝐸 𝑒 = { 𝑀 , 𝑁 } ) |
| 8 | rmoeq | ⊢ ∃* 𝑒 ∈ 𝐸 𝑒 = { 𝑀 , 𝑁 } | |
| 9 | reu5 | ⊢ ( ∃! 𝑒 ∈ 𝐸 𝑒 = { 𝑀 , 𝑁 } ↔ ( ∃ 𝑒 ∈ 𝐸 𝑒 = { 𝑀 , 𝑁 } ∧ ∃* 𝑒 ∈ 𝐸 𝑒 = { 𝑀 , 𝑁 } ) ) | |
| 10 | 7 8 9 | sylanblrc | ⊢ ( ( 𝐺 ∈ USGraph ∧ 𝑀 ∈ ( 𝐺 NeighbVtx 𝑁 ) ) → ∃! 𝑒 ∈ 𝐸 𝑒 = { 𝑀 , 𝑁 } ) |