This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Alternate version of usgredgleord , not using the notation ( EdgG ) . In a simple graph the number of edges which contain a given vertex is not greater than the number of vertices. (Contributed by Alexander van der Vekens, 4-Jan-2018) (Revised by AV, 18-Oct-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | usgredg2v.v | |- V = ( Vtx ` G ) |
|
| usgredg2v.e | |- E = ( iEdg ` G ) |
||
| Assertion | usgriedgleord | |- ( ( G e. USGraph /\ N e. V ) -> ( # ` { x e. dom E | N e. ( E ` x ) } ) <_ ( # ` V ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | usgredg2v.v | |- V = ( Vtx ` G ) |
|
| 2 | usgredg2v.e | |- E = ( iEdg ` G ) |
|
| 3 | 1 | fvexi | |- V e. _V |
| 4 | eqid | |- { x e. dom E | N e. ( E ` x ) } = { x e. dom E | N e. ( E ` x ) } |
|
| 5 | eqid | |- ( y e. { x e. dom E | N e. ( E ` x ) } |-> ( iota_ z e. V ( E ` y ) = { z , N } ) ) = ( y e. { x e. dom E | N e. ( E ` x ) } |-> ( iota_ z e. V ( E ` y ) = { z , N } ) ) |
|
| 6 | 1 2 4 5 | usgredg2v | |- ( ( G e. USGraph /\ N e. V ) -> ( y e. { x e. dom E | N e. ( E ` x ) } |-> ( iota_ z e. V ( E ` y ) = { z , N } ) ) : { x e. dom E | N e. ( E ` x ) } -1-1-> V ) |
| 7 | f1domg | |- ( V e. _V -> ( ( y e. { x e. dom E | N e. ( E ` x ) } |-> ( iota_ z e. V ( E ` y ) = { z , N } ) ) : { x e. dom E | N e. ( E ` x ) } -1-1-> V -> { x e. dom E | N e. ( E ` x ) } ~<_ V ) ) |
|
| 8 | 3 6 7 | mpsyl | |- ( ( G e. USGraph /\ N e. V ) -> { x e. dom E | N e. ( E ` x ) } ~<_ V ) |
| 9 | hashdomi | |- ( { x e. dom E | N e. ( E ` x ) } ~<_ V -> ( # ` { x e. dom E | N e. ( E ` x ) } ) <_ ( # ` V ) ) |
|
| 10 | 8 9 | syl | |- ( ( G e. USGraph /\ N e. V ) -> ( # ` { x e. dom E | N e. ( E ` x ) } ) <_ ( # ` V ) ) |