This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: In a simple graph the number of edges which contain a given vertex is not greater than the number of vertices. (Contributed by Alexander van der Vekens, 4-Jan-2018) (Revised by AV, 18-Oct-2020) (Proof shortened by AV, 6-Dec-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | usgredgleord.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| usgredgleord.e | ⊢ 𝐸 = ( Edg ‘ 𝐺 ) | ||
| Assertion | usgredgleord | ⊢ ( ( 𝐺 ∈ USGraph ∧ 𝑁 ∈ 𝑉 ) → ( ♯ ‘ { 𝑒 ∈ 𝐸 ∣ 𝑁 ∈ 𝑒 } ) ≤ ( ♯ ‘ 𝑉 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | usgredgleord.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| 2 | usgredgleord.e | ⊢ 𝐸 = ( Edg ‘ 𝐺 ) | |
| 3 | usgruspgr | ⊢ ( 𝐺 ∈ USGraph → 𝐺 ∈ USPGraph ) | |
| 4 | 1 2 | uspgredgleord | ⊢ ( ( 𝐺 ∈ USPGraph ∧ 𝑁 ∈ 𝑉 ) → ( ♯ ‘ { 𝑒 ∈ 𝐸 ∣ 𝑁 ∈ 𝑒 } ) ≤ ( ♯ ‘ 𝑉 ) ) |
| 5 | 3 4 | sylan | ⊢ ( ( 𝐺 ∈ USGraph ∧ 𝑁 ∈ 𝑉 ) → ( ♯ ‘ { 𝑒 ∈ 𝐸 ∣ 𝑁 ∈ 𝑒 } ) ≤ ( ♯ ‘ 𝑉 ) ) |