This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: In a finite simple graph, the number of edges is finite iff the number of edges not containing one of the vertices is finite. (Contributed by Alexander van der Vekens, 4-Jan-2018) (Revised by AV, 9-Nov-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fusgredgfi.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| fusgredgfi.e | ⊢ 𝐸 = ( Edg ‘ 𝐺 ) | ||
| usgrfilem.f | ⊢ 𝐹 = { 𝑒 ∈ 𝐸 ∣ 𝑁 ∉ 𝑒 } | ||
| Assertion | usgrfilem | ⊢ ( ( 𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ 𝑉 ) → ( 𝐸 ∈ Fin ↔ 𝐹 ∈ Fin ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fusgredgfi.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| 2 | fusgredgfi.e | ⊢ 𝐸 = ( Edg ‘ 𝐺 ) | |
| 3 | usgrfilem.f | ⊢ 𝐹 = { 𝑒 ∈ 𝐸 ∣ 𝑁 ∉ 𝑒 } | |
| 4 | rabfi | ⊢ ( 𝐸 ∈ Fin → { 𝑒 ∈ 𝐸 ∣ 𝑁 ∉ 𝑒 } ∈ Fin ) | |
| 5 | 3 4 | eqeltrid | ⊢ ( 𝐸 ∈ Fin → 𝐹 ∈ Fin ) |
| 6 | uncom | ⊢ ( 𝐹 ∪ { 𝑒 ∈ 𝐸 ∣ 𝑁 ∈ 𝑒 } ) = ( { 𝑒 ∈ 𝐸 ∣ 𝑁 ∈ 𝑒 } ∪ 𝐹 ) | |
| 7 | eqid | ⊢ { 𝑒 ∈ 𝐸 ∣ 𝑁 ∈ 𝑒 } = { 𝑒 ∈ 𝐸 ∣ 𝑁 ∈ 𝑒 } | |
| 8 | 7 3 | elnelun | ⊢ ( { 𝑒 ∈ 𝐸 ∣ 𝑁 ∈ 𝑒 } ∪ 𝐹 ) = 𝐸 |
| 9 | 6 8 | eqtr2i | ⊢ 𝐸 = ( 𝐹 ∪ { 𝑒 ∈ 𝐸 ∣ 𝑁 ∈ 𝑒 } ) |
| 10 | 1 2 | fusgredgfi | ⊢ ( ( 𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ 𝑉 ) → { 𝑒 ∈ 𝐸 ∣ 𝑁 ∈ 𝑒 } ∈ Fin ) |
| 11 | 10 | anim1ci | ⊢ ( ( ( 𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ 𝑉 ) ∧ 𝐹 ∈ Fin ) → ( 𝐹 ∈ Fin ∧ { 𝑒 ∈ 𝐸 ∣ 𝑁 ∈ 𝑒 } ∈ Fin ) ) |
| 12 | unfi | ⊢ ( ( 𝐹 ∈ Fin ∧ { 𝑒 ∈ 𝐸 ∣ 𝑁 ∈ 𝑒 } ∈ Fin ) → ( 𝐹 ∪ { 𝑒 ∈ 𝐸 ∣ 𝑁 ∈ 𝑒 } ) ∈ Fin ) | |
| 13 | 11 12 | syl | ⊢ ( ( ( 𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ 𝑉 ) ∧ 𝐹 ∈ Fin ) → ( 𝐹 ∪ { 𝑒 ∈ 𝐸 ∣ 𝑁 ∈ 𝑒 } ) ∈ Fin ) |
| 14 | 9 13 | eqeltrid | ⊢ ( ( ( 𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ 𝑉 ) ∧ 𝐹 ∈ Fin ) → 𝐸 ∈ Fin ) |
| 15 | 14 | ex | ⊢ ( ( 𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ 𝑉 ) → ( 𝐹 ∈ Fin → 𝐸 ∈ Fin ) ) |
| 16 | 5 15 | impbid2 | ⊢ ( ( 𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ 𝑉 ) → ( 𝐸 ∈ Fin ↔ 𝐹 ∈ Fin ) ) |