This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Induction base for fusgrfis . Main work is done in uhgr0v0e . (Contributed by Alexander van der Vekens, 5-Jan-2018) (Revised by AV, 23-Oct-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fusgrfisbase | ⊢ ( ( ( 𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌 ) ∧ 〈 𝑉 , 𝐸 〉 ∈ USGraph ∧ ( ♯ ‘ 𝑉 ) = 0 ) → 𝐸 ∈ Fin ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | usgruhgr | ⊢ ( 〈 𝑉 , 𝐸 〉 ∈ USGraph → 〈 𝑉 , 𝐸 〉 ∈ UHGraph ) | |
| 2 | 1 | 3ad2ant2 | ⊢ ( ( ( 𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌 ) ∧ 〈 𝑉 , 𝐸 〉 ∈ USGraph ∧ ( ♯ ‘ 𝑉 ) = 0 ) → 〈 𝑉 , 𝐸 〉 ∈ UHGraph ) |
| 3 | opvtxfv | ⊢ ( ( 𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌 ) → ( Vtx ‘ 〈 𝑉 , 𝐸 〉 ) = 𝑉 ) | |
| 4 | 3 | 3ad2ant1 | ⊢ ( ( ( 𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌 ) ∧ 〈 𝑉 , 𝐸 〉 ∈ USGraph ∧ ( ♯ ‘ 𝑉 ) = 0 ) → ( Vtx ‘ 〈 𝑉 , 𝐸 〉 ) = 𝑉 ) |
| 5 | hasheq0 | ⊢ ( 𝑉 ∈ 𝑋 → ( ( ♯ ‘ 𝑉 ) = 0 ↔ 𝑉 = ∅ ) ) | |
| 6 | 5 | biimpd | ⊢ ( 𝑉 ∈ 𝑋 → ( ( ♯ ‘ 𝑉 ) = 0 → 𝑉 = ∅ ) ) |
| 7 | 6 | adantr | ⊢ ( ( 𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌 ) → ( ( ♯ ‘ 𝑉 ) = 0 → 𝑉 = ∅ ) ) |
| 8 | 7 | a1d | ⊢ ( ( 𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌 ) → ( 〈 𝑉 , 𝐸 〉 ∈ USGraph → ( ( ♯ ‘ 𝑉 ) = 0 → 𝑉 = ∅ ) ) ) |
| 9 | 8 | 3imp | ⊢ ( ( ( 𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌 ) ∧ 〈 𝑉 , 𝐸 〉 ∈ USGraph ∧ ( ♯ ‘ 𝑉 ) = 0 ) → 𝑉 = ∅ ) |
| 10 | 4 9 | eqtrd | ⊢ ( ( ( 𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌 ) ∧ 〈 𝑉 , 𝐸 〉 ∈ USGraph ∧ ( ♯ ‘ 𝑉 ) = 0 ) → ( Vtx ‘ 〈 𝑉 , 𝐸 〉 ) = ∅ ) |
| 11 | eqid | ⊢ ( Vtx ‘ 〈 𝑉 , 𝐸 〉 ) = ( Vtx ‘ 〈 𝑉 , 𝐸 〉 ) | |
| 12 | eqid | ⊢ ( Edg ‘ 〈 𝑉 , 𝐸 〉 ) = ( Edg ‘ 〈 𝑉 , 𝐸 〉 ) | |
| 13 | 11 12 | uhgr0v0e | ⊢ ( ( 〈 𝑉 , 𝐸 〉 ∈ UHGraph ∧ ( Vtx ‘ 〈 𝑉 , 𝐸 〉 ) = ∅ ) → ( Edg ‘ 〈 𝑉 , 𝐸 〉 ) = ∅ ) |
| 14 | 2 10 13 | syl2anc | ⊢ ( ( ( 𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌 ) ∧ 〈 𝑉 , 𝐸 〉 ∈ USGraph ∧ ( ♯ ‘ 𝑉 ) = 0 ) → ( Edg ‘ 〈 𝑉 , 𝐸 〉 ) = ∅ ) |
| 15 | 0fi | ⊢ ∅ ∈ Fin | |
| 16 | 14 15 | eqeltrdi | ⊢ ( ( ( 𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌 ) ∧ 〈 𝑉 , 𝐸 〉 ∈ USGraph ∧ ( ♯ ‘ 𝑉 ) = 0 ) → ( Edg ‘ 〈 𝑉 , 𝐸 〉 ) ∈ Fin ) |
| 17 | eqid | ⊢ ( iEdg ‘ 〈 𝑉 , 𝐸 〉 ) = ( iEdg ‘ 〈 𝑉 , 𝐸 〉 ) | |
| 18 | 17 12 | usgredgffibi | ⊢ ( 〈 𝑉 , 𝐸 〉 ∈ USGraph → ( ( Edg ‘ 〈 𝑉 , 𝐸 〉 ) ∈ Fin ↔ ( iEdg ‘ 〈 𝑉 , 𝐸 〉 ) ∈ Fin ) ) |
| 19 | 18 | 3ad2ant2 | ⊢ ( ( ( 𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌 ) ∧ 〈 𝑉 , 𝐸 〉 ∈ USGraph ∧ ( ♯ ‘ 𝑉 ) = 0 ) → ( ( Edg ‘ 〈 𝑉 , 𝐸 〉 ) ∈ Fin ↔ ( iEdg ‘ 〈 𝑉 , 𝐸 〉 ) ∈ Fin ) ) |
| 20 | opiedgfv | ⊢ ( ( 𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌 ) → ( iEdg ‘ 〈 𝑉 , 𝐸 〉 ) = 𝐸 ) | |
| 21 | 20 | 3ad2ant1 | ⊢ ( ( ( 𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌 ) ∧ 〈 𝑉 , 𝐸 〉 ∈ USGraph ∧ ( ♯ ‘ 𝑉 ) = 0 ) → ( iEdg ‘ 〈 𝑉 , 𝐸 〉 ) = 𝐸 ) |
| 22 | 21 | eleq1d | ⊢ ( ( ( 𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌 ) ∧ 〈 𝑉 , 𝐸 〉 ∈ USGraph ∧ ( ♯ ‘ 𝑉 ) = 0 ) → ( ( iEdg ‘ 〈 𝑉 , 𝐸 〉 ) ∈ Fin ↔ 𝐸 ∈ Fin ) ) |
| 23 | 19 22 | bitrd | ⊢ ( ( ( 𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌 ) ∧ 〈 𝑉 , 𝐸 〉 ∈ USGraph ∧ ( ♯ ‘ 𝑉 ) = 0 ) → ( ( Edg ‘ 〈 𝑉 , 𝐸 〉 ) ∈ Fin ↔ 𝐸 ∈ Fin ) ) |
| 24 | 16 23 | mpbid | ⊢ ( ( ( 𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌 ) ∧ 〈 𝑉 , 𝐸 〉 ∈ USGraph ∧ ( ♯ ‘ 𝑉 ) = 0 ) → 𝐸 ∈ Fin ) |