This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: In a finite simple graph the number of edges which contain a given vertex is also finite. (Contributed by Alexander van der Vekens, 4-Jan-2018) (Revised by AV, 21-Oct-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fusgredgfi.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| fusgredgfi.e | ⊢ 𝐸 = ( Edg ‘ 𝐺 ) | ||
| Assertion | fusgredgfi | ⊢ ( ( 𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ 𝑉 ) → { 𝑒 ∈ 𝐸 ∣ 𝑁 ∈ 𝑒 } ∈ Fin ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fusgredgfi.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| 2 | fusgredgfi.e | ⊢ 𝐸 = ( Edg ‘ 𝐺 ) | |
| 3 | 2 | fvexi | ⊢ 𝐸 ∈ V |
| 4 | rabexg | ⊢ ( 𝐸 ∈ V → { 𝑒 ∈ 𝐸 ∣ 𝑁 ∈ 𝑒 } ∈ V ) | |
| 5 | 3 4 | mp1i | ⊢ ( ( 𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ 𝑉 ) → { 𝑒 ∈ 𝐸 ∣ 𝑁 ∈ 𝑒 } ∈ V ) |
| 6 | 1 | isfusgr | ⊢ ( 𝐺 ∈ FinUSGraph ↔ ( 𝐺 ∈ USGraph ∧ 𝑉 ∈ Fin ) ) |
| 7 | hashcl | ⊢ ( 𝑉 ∈ Fin → ( ♯ ‘ 𝑉 ) ∈ ℕ0 ) | |
| 8 | 6 7 | simplbiim | ⊢ ( 𝐺 ∈ FinUSGraph → ( ♯ ‘ 𝑉 ) ∈ ℕ0 ) |
| 9 | 8 | adantr | ⊢ ( ( 𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ 𝑉 ) → ( ♯ ‘ 𝑉 ) ∈ ℕ0 ) |
| 10 | fusgrusgr | ⊢ ( 𝐺 ∈ FinUSGraph → 𝐺 ∈ USGraph ) | |
| 11 | 1 2 | usgredgleord | ⊢ ( ( 𝐺 ∈ USGraph ∧ 𝑁 ∈ 𝑉 ) → ( ♯ ‘ { 𝑒 ∈ 𝐸 ∣ 𝑁 ∈ 𝑒 } ) ≤ ( ♯ ‘ 𝑉 ) ) |
| 12 | 10 11 | sylan | ⊢ ( ( 𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ 𝑉 ) → ( ♯ ‘ { 𝑒 ∈ 𝐸 ∣ 𝑁 ∈ 𝑒 } ) ≤ ( ♯ ‘ 𝑉 ) ) |
| 13 | hashbnd | ⊢ ( ( { 𝑒 ∈ 𝐸 ∣ 𝑁 ∈ 𝑒 } ∈ V ∧ ( ♯ ‘ 𝑉 ) ∈ ℕ0 ∧ ( ♯ ‘ { 𝑒 ∈ 𝐸 ∣ 𝑁 ∈ 𝑒 } ) ≤ ( ♯ ‘ 𝑉 ) ) → { 𝑒 ∈ 𝐸 ∣ 𝑁 ∈ 𝑒 } ∈ Fin ) | |
| 14 | 5 9 12 13 | syl3anc | ⊢ ( ( 𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ 𝑉 ) → { 𝑒 ∈ 𝐸 ∣ 𝑁 ∈ 𝑒 } ∈ Fin ) |