This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: For a vertex incident to an edge there is exactly one other vertex incident to the edge. (Contributed by Alexander van der Vekens, 4-Jan-2018) (Revised by AV, 18-Oct-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | usgredg3.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| usgredg3.e | ⊢ 𝐸 = ( iEdg ‘ 𝐺 ) | ||
| Assertion | usgredgreu | ⊢ ( ( 𝐺 ∈ USGraph ∧ 𝑋 ∈ dom 𝐸 ∧ 𝑌 ∈ ( 𝐸 ‘ 𝑋 ) ) → ∃! 𝑦 ∈ 𝑉 ( 𝐸 ‘ 𝑋 ) = { 𝑌 , 𝑦 } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | usgredg3.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| 2 | usgredg3.e | ⊢ 𝐸 = ( iEdg ‘ 𝐺 ) | |
| 3 | 1 2 | usgredg4 | ⊢ ( ( 𝐺 ∈ USGraph ∧ 𝑋 ∈ dom 𝐸 ∧ 𝑌 ∈ ( 𝐸 ‘ 𝑋 ) ) → ∃ 𝑦 ∈ 𝑉 ( 𝐸 ‘ 𝑋 ) = { 𝑌 , 𝑦 } ) |
| 4 | eqtr2 | ⊢ ( ( ( 𝐸 ‘ 𝑋 ) = { 𝑌 , 𝑦 } ∧ ( 𝐸 ‘ 𝑋 ) = { 𝑌 , 𝑥 } ) → { 𝑌 , 𝑦 } = { 𝑌 , 𝑥 } ) | |
| 5 | vex | ⊢ 𝑦 ∈ V | |
| 6 | vex | ⊢ 𝑥 ∈ V | |
| 7 | 5 6 | preqr2 | ⊢ ( { 𝑌 , 𝑦 } = { 𝑌 , 𝑥 } → 𝑦 = 𝑥 ) |
| 8 | 4 7 | syl | ⊢ ( ( ( 𝐸 ‘ 𝑋 ) = { 𝑌 , 𝑦 } ∧ ( 𝐸 ‘ 𝑋 ) = { 𝑌 , 𝑥 } ) → 𝑦 = 𝑥 ) |
| 9 | 8 | a1i | ⊢ ( ( ( 𝐺 ∈ USGraph ∧ 𝑋 ∈ dom 𝐸 ∧ 𝑌 ∈ ( 𝐸 ‘ 𝑋 ) ) ∧ ( 𝑦 ∈ 𝑉 ∧ 𝑥 ∈ 𝑉 ) ) → ( ( ( 𝐸 ‘ 𝑋 ) = { 𝑌 , 𝑦 } ∧ ( 𝐸 ‘ 𝑋 ) = { 𝑌 , 𝑥 } ) → 𝑦 = 𝑥 ) ) |
| 10 | 9 | ralrimivva | ⊢ ( ( 𝐺 ∈ USGraph ∧ 𝑋 ∈ dom 𝐸 ∧ 𝑌 ∈ ( 𝐸 ‘ 𝑋 ) ) → ∀ 𝑦 ∈ 𝑉 ∀ 𝑥 ∈ 𝑉 ( ( ( 𝐸 ‘ 𝑋 ) = { 𝑌 , 𝑦 } ∧ ( 𝐸 ‘ 𝑋 ) = { 𝑌 , 𝑥 } ) → 𝑦 = 𝑥 ) ) |
| 11 | preq2 | ⊢ ( 𝑦 = 𝑥 → { 𝑌 , 𝑦 } = { 𝑌 , 𝑥 } ) | |
| 12 | 11 | eqeq2d | ⊢ ( 𝑦 = 𝑥 → ( ( 𝐸 ‘ 𝑋 ) = { 𝑌 , 𝑦 } ↔ ( 𝐸 ‘ 𝑋 ) = { 𝑌 , 𝑥 } ) ) |
| 13 | 12 | reu4 | ⊢ ( ∃! 𝑦 ∈ 𝑉 ( 𝐸 ‘ 𝑋 ) = { 𝑌 , 𝑦 } ↔ ( ∃ 𝑦 ∈ 𝑉 ( 𝐸 ‘ 𝑋 ) = { 𝑌 , 𝑦 } ∧ ∀ 𝑦 ∈ 𝑉 ∀ 𝑥 ∈ 𝑉 ( ( ( 𝐸 ‘ 𝑋 ) = { 𝑌 , 𝑦 } ∧ ( 𝐸 ‘ 𝑋 ) = { 𝑌 , 𝑥 } ) → 𝑦 = 𝑥 ) ) ) |
| 14 | 3 10 13 | sylanbrc | ⊢ ( ( 𝐺 ∈ USGraph ∧ 𝑋 ∈ dom 𝐸 ∧ 𝑌 ∈ ( 𝐸 ‘ 𝑋 ) ) → ∃! 𝑦 ∈ 𝑉 ( 𝐸 ‘ 𝑋 ) = { 𝑌 , 𝑦 } ) |