This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma 1 for usgredg2v . (Contributed by Alexander van der Vekens, 4-Jan-2018) (Revised by AV, 18-Oct-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | usgredg2v.v | |- V = ( Vtx ` G ) |
|
| usgredg2v.e | |- E = ( iEdg ` G ) |
||
| usgredg2v.a | |- A = { x e. dom E | N e. ( E ` x ) } |
||
| Assertion | usgredg2vlem1 | |- ( ( G e. USGraph /\ Y e. A ) -> ( iota_ z e. V ( E ` Y ) = { z , N } ) e. V ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | usgredg2v.v | |- V = ( Vtx ` G ) |
|
| 2 | usgredg2v.e | |- E = ( iEdg ` G ) |
|
| 3 | usgredg2v.a | |- A = { x e. dom E | N e. ( E ` x ) } |
|
| 4 | fveq2 | |- ( x = Y -> ( E ` x ) = ( E ` Y ) ) |
|
| 5 | 4 | eleq2d | |- ( x = Y -> ( N e. ( E ` x ) <-> N e. ( E ` Y ) ) ) |
| 6 | 5 3 | elrab2 | |- ( Y e. A <-> ( Y e. dom E /\ N e. ( E ` Y ) ) ) |
| 7 | 1 2 | usgredgreu | |- ( ( G e. USGraph /\ Y e. dom E /\ N e. ( E ` Y ) ) -> E! z e. V ( E ` Y ) = { N , z } ) |
| 8 | prcom | |- { N , z } = { z , N } |
|
| 9 | 8 | eqeq2i | |- ( ( E ` Y ) = { N , z } <-> ( E ` Y ) = { z , N } ) |
| 10 | 9 | reubii | |- ( E! z e. V ( E ` Y ) = { N , z } <-> E! z e. V ( E ` Y ) = { z , N } ) |
| 11 | 7 10 | sylib | |- ( ( G e. USGraph /\ Y e. dom E /\ N e. ( E ` Y ) ) -> E! z e. V ( E ` Y ) = { z , N } ) |
| 12 | 11 | 3expb | |- ( ( G e. USGraph /\ ( Y e. dom E /\ N e. ( E ` Y ) ) ) -> E! z e. V ( E ` Y ) = { z , N } ) |
| 13 | riotacl | |- ( E! z e. V ( E ` Y ) = { z , N } -> ( iota_ z e. V ( E ` Y ) = { z , N } ) e. V ) |
|
| 14 | 12 13 | syl | |- ( ( G e. USGraph /\ ( Y e. dom E /\ N e. ( E ` Y ) ) ) -> ( iota_ z e. V ( E ` Y ) = { z , N } ) e. V ) |
| 15 | 6 14 | sylan2b | |- ( ( G e. USGraph /\ Y e. A ) -> ( iota_ z e. V ( E ` Y ) = { z , N } ) e. V ) |