This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The vertices and edges are pairwise different in a walk of length 2 in a simple graph. (Contributed by Alexander van der Vekens, 2-Mar-2018) (Revised by AV, 26-Jan-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | usgr2wlkneq | ⊢ ( ( ( 𝐺 ∈ USGraph ∧ 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ) ∧ ( ( ♯ ‘ 𝐹 ) = 2 ∧ ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ) ) → ( ( ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ 1 ) ∧ ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ 2 ) ∧ ( 𝑃 ‘ 1 ) ≠ ( 𝑃 ‘ 2 ) ) ∧ ( 𝐹 ‘ 0 ) ≠ ( 𝐹 ‘ 1 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | usgrupgr | ⊢ ( 𝐺 ∈ USGraph → 𝐺 ∈ UPGraph ) | |
| 2 | eqid | ⊢ ( Vtx ‘ 𝐺 ) = ( Vtx ‘ 𝐺 ) | |
| 3 | eqid | ⊢ ( iEdg ‘ 𝐺 ) = ( iEdg ‘ 𝐺 ) | |
| 4 | 2 3 | upgriswlk | ⊢ ( 𝐺 ∈ UPGraph → ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ↔ ( 𝐹 ∈ Word dom ( iEdg ‘ 𝐺 ) ∧ 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 ) ∧ ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ) ) ) |
| 5 | 1 4 | syl | ⊢ ( 𝐺 ∈ USGraph → ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ↔ ( 𝐹 ∈ Word dom ( iEdg ‘ 𝐺 ) ∧ 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 ) ∧ ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ) ) ) |
| 6 | 2wlklem | ⊢ ( ∀ 𝑘 ∈ { 0 , 1 } ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ↔ ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 0 ) ) = { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ∧ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 1 ) ) = { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ) ) | |
| 7 | simplll | ⊢ ( ( ( ( 𝐺 ∈ USGraph ∧ 𝐹 ∈ Word dom ( iEdg ‘ 𝐺 ) ) ∧ ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ 2 ) ) ∧ 𝑃 : ( 0 ... 2 ) ⟶ ( Vtx ‘ 𝐺 ) ) → 𝐺 ∈ USGraph ) | |
| 8 | fvex | ⊢ ( 𝑃 ‘ 0 ) ∈ V | |
| 9 | 3 | usgrnloopv | ⊢ ( ( 𝐺 ∈ USGraph ∧ ( 𝑃 ‘ 0 ) ∈ V ) → ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 0 ) ) = { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } → ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ 1 ) ) ) |
| 10 | 7 8 9 | sylancl | ⊢ ( ( ( ( 𝐺 ∈ USGraph ∧ 𝐹 ∈ Word dom ( iEdg ‘ 𝐺 ) ) ∧ ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ 2 ) ) ∧ 𝑃 : ( 0 ... 2 ) ⟶ ( Vtx ‘ 𝐺 ) ) → ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 0 ) ) = { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } → ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ 1 ) ) ) |
| 11 | fvex | ⊢ ( 𝑃 ‘ 1 ) ∈ V | |
| 12 | 3 | usgrnloopv | ⊢ ( ( 𝐺 ∈ USGraph ∧ ( 𝑃 ‘ 1 ) ∈ V ) → ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 1 ) ) = { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } → ( 𝑃 ‘ 1 ) ≠ ( 𝑃 ‘ 2 ) ) ) |
| 13 | 7 11 12 | sylancl | ⊢ ( ( ( ( 𝐺 ∈ USGraph ∧ 𝐹 ∈ Word dom ( iEdg ‘ 𝐺 ) ) ∧ ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ 2 ) ) ∧ 𝑃 : ( 0 ... 2 ) ⟶ ( Vtx ‘ 𝐺 ) ) → ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 1 ) ) = { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } → ( 𝑃 ‘ 1 ) ≠ ( 𝑃 ‘ 2 ) ) ) |
| 14 | 10 13 | anim12d | ⊢ ( ( ( ( 𝐺 ∈ USGraph ∧ 𝐹 ∈ Word dom ( iEdg ‘ 𝐺 ) ) ∧ ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ 2 ) ) ∧ 𝑃 : ( 0 ... 2 ) ⟶ ( Vtx ‘ 𝐺 ) ) → ( ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 0 ) ) = { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ∧ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 1 ) ) = { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ) → ( ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ 1 ) ∧ ( 𝑃 ‘ 1 ) ≠ ( 𝑃 ‘ 2 ) ) ) ) |
| 15 | fveqeq2 | ⊢ ( ( 𝐹 ‘ 0 ) = ( 𝐹 ‘ 1 ) → ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 0 ) ) = { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ↔ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 1 ) ) = { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ) ) | |
| 16 | eqtr2 | ⊢ ( ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 1 ) ) = { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ∧ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 1 ) ) = { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ) → { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } = { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ) | |
| 17 | prcom | ⊢ { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } = { ( 𝑃 ‘ 2 ) , ( 𝑃 ‘ 1 ) } | |
| 18 | 17 | eqeq2i | ⊢ ( { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } = { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ↔ { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } = { ( 𝑃 ‘ 2 ) , ( 𝑃 ‘ 1 ) } ) |
| 19 | fvex | ⊢ ( 𝑃 ‘ 2 ) ∈ V | |
| 20 | 8 19 | preqr1 | ⊢ ( { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } = { ( 𝑃 ‘ 2 ) , ( 𝑃 ‘ 1 ) } → ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ 2 ) ) |
| 21 | 18 20 | sylbi | ⊢ ( { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } = { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } → ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ 2 ) ) |
| 22 | 16 21 | syl | ⊢ ( ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 1 ) ) = { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ∧ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 1 ) ) = { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ) → ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ 2 ) ) |
| 23 | 22 | ex | ⊢ ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 1 ) ) = { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } → ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 1 ) ) = { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } → ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ 2 ) ) ) |
| 24 | 15 23 | biimtrdi | ⊢ ( ( 𝐹 ‘ 0 ) = ( 𝐹 ‘ 1 ) → ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 0 ) ) = { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } → ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 1 ) ) = { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } → ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ 2 ) ) ) ) |
| 25 | 24 | impd | ⊢ ( ( 𝐹 ‘ 0 ) = ( 𝐹 ‘ 1 ) → ( ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 0 ) ) = { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ∧ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 1 ) ) = { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ) → ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ 2 ) ) ) |
| 26 | 25 | com12 | ⊢ ( ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 0 ) ) = { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ∧ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 1 ) ) = { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ) → ( ( 𝐹 ‘ 0 ) = ( 𝐹 ‘ 1 ) → ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ 2 ) ) ) |
| 27 | 26 | necon3d | ⊢ ( ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 0 ) ) = { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ∧ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 1 ) ) = { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ) → ( ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ 2 ) → ( 𝐹 ‘ 0 ) ≠ ( 𝐹 ‘ 1 ) ) ) |
| 28 | 27 | com12 | ⊢ ( ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ 2 ) → ( ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 0 ) ) = { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ∧ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 1 ) ) = { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ) → ( 𝐹 ‘ 0 ) ≠ ( 𝐹 ‘ 1 ) ) ) |
| 29 | 28 | adantr | ⊢ ( ( ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ 2 ) ∧ ( ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ 1 ) ∧ ( 𝑃 ‘ 1 ) ≠ ( 𝑃 ‘ 2 ) ) ) → ( ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 0 ) ) = { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ∧ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 1 ) ) = { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ) → ( 𝐹 ‘ 0 ) ≠ ( 𝐹 ‘ 1 ) ) ) |
| 30 | simpl | ⊢ ( ( ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ 1 ) ∧ ( 𝑃 ‘ 1 ) ≠ ( 𝑃 ‘ 2 ) ) → ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ 1 ) ) | |
| 31 | 30 | adantl | ⊢ ( ( ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ 2 ) ∧ ( ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ 1 ) ∧ ( 𝑃 ‘ 1 ) ≠ ( 𝑃 ‘ 2 ) ) ) → ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ 1 ) ) |
| 32 | simpl | ⊢ ( ( ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ 2 ) ∧ ( ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ 1 ) ∧ ( 𝑃 ‘ 1 ) ≠ ( 𝑃 ‘ 2 ) ) ) → ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ 2 ) ) | |
| 33 | simprr | ⊢ ( ( ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ 2 ) ∧ ( ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ 1 ) ∧ ( 𝑃 ‘ 1 ) ≠ ( 𝑃 ‘ 2 ) ) ) → ( 𝑃 ‘ 1 ) ≠ ( 𝑃 ‘ 2 ) ) | |
| 34 | 31 32 33 | 3jca | ⊢ ( ( ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ 2 ) ∧ ( ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ 1 ) ∧ ( 𝑃 ‘ 1 ) ≠ ( 𝑃 ‘ 2 ) ) ) → ( ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ 1 ) ∧ ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ 2 ) ∧ ( 𝑃 ‘ 1 ) ≠ ( 𝑃 ‘ 2 ) ) ) |
| 35 | 29 34 | jctild | ⊢ ( ( ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ 2 ) ∧ ( ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ 1 ) ∧ ( 𝑃 ‘ 1 ) ≠ ( 𝑃 ‘ 2 ) ) ) → ( ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 0 ) ) = { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ∧ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 1 ) ) = { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ) → ( ( ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ 1 ) ∧ ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ 2 ) ∧ ( 𝑃 ‘ 1 ) ≠ ( 𝑃 ‘ 2 ) ) ∧ ( 𝐹 ‘ 0 ) ≠ ( 𝐹 ‘ 1 ) ) ) ) |
| 36 | 35 | ex | ⊢ ( ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ 2 ) → ( ( ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ 1 ) ∧ ( 𝑃 ‘ 1 ) ≠ ( 𝑃 ‘ 2 ) ) → ( ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 0 ) ) = { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ∧ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 1 ) ) = { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ) → ( ( ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ 1 ) ∧ ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ 2 ) ∧ ( 𝑃 ‘ 1 ) ≠ ( 𝑃 ‘ 2 ) ) ∧ ( 𝐹 ‘ 0 ) ≠ ( 𝐹 ‘ 1 ) ) ) ) ) |
| 37 | 36 | com23 | ⊢ ( ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ 2 ) → ( ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 0 ) ) = { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ∧ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 1 ) ) = { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ) → ( ( ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ 1 ) ∧ ( 𝑃 ‘ 1 ) ≠ ( 𝑃 ‘ 2 ) ) → ( ( ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ 1 ) ∧ ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ 2 ) ∧ ( 𝑃 ‘ 1 ) ≠ ( 𝑃 ‘ 2 ) ) ∧ ( 𝐹 ‘ 0 ) ≠ ( 𝐹 ‘ 1 ) ) ) ) ) |
| 38 | 37 | adantl | ⊢ ( ( ( 𝐺 ∈ USGraph ∧ 𝐹 ∈ Word dom ( iEdg ‘ 𝐺 ) ) ∧ ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ 2 ) ) → ( ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 0 ) ) = { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ∧ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 1 ) ) = { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ) → ( ( ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ 1 ) ∧ ( 𝑃 ‘ 1 ) ≠ ( 𝑃 ‘ 2 ) ) → ( ( ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ 1 ) ∧ ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ 2 ) ∧ ( 𝑃 ‘ 1 ) ≠ ( 𝑃 ‘ 2 ) ) ∧ ( 𝐹 ‘ 0 ) ≠ ( 𝐹 ‘ 1 ) ) ) ) ) |
| 39 | 38 | adantr | ⊢ ( ( ( ( 𝐺 ∈ USGraph ∧ 𝐹 ∈ Word dom ( iEdg ‘ 𝐺 ) ) ∧ ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ 2 ) ) ∧ 𝑃 : ( 0 ... 2 ) ⟶ ( Vtx ‘ 𝐺 ) ) → ( ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 0 ) ) = { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ∧ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 1 ) ) = { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ) → ( ( ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ 1 ) ∧ ( 𝑃 ‘ 1 ) ≠ ( 𝑃 ‘ 2 ) ) → ( ( ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ 1 ) ∧ ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ 2 ) ∧ ( 𝑃 ‘ 1 ) ≠ ( 𝑃 ‘ 2 ) ) ∧ ( 𝐹 ‘ 0 ) ≠ ( 𝐹 ‘ 1 ) ) ) ) ) |
| 40 | 14 39 | mpdd | ⊢ ( ( ( ( 𝐺 ∈ USGraph ∧ 𝐹 ∈ Word dom ( iEdg ‘ 𝐺 ) ) ∧ ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ 2 ) ) ∧ 𝑃 : ( 0 ... 2 ) ⟶ ( Vtx ‘ 𝐺 ) ) → ( ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 0 ) ) = { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ∧ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 1 ) ) = { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ) → ( ( ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ 1 ) ∧ ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ 2 ) ∧ ( 𝑃 ‘ 1 ) ≠ ( 𝑃 ‘ 2 ) ) ∧ ( 𝐹 ‘ 0 ) ≠ ( 𝐹 ‘ 1 ) ) ) ) |
| 41 | 6 40 | biimtrid | ⊢ ( ( ( ( 𝐺 ∈ USGraph ∧ 𝐹 ∈ Word dom ( iEdg ‘ 𝐺 ) ) ∧ ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ 2 ) ) ∧ 𝑃 : ( 0 ... 2 ) ⟶ ( Vtx ‘ 𝐺 ) ) → ( ∀ 𝑘 ∈ { 0 , 1 } ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } → ( ( ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ 1 ) ∧ ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ 2 ) ∧ ( 𝑃 ‘ 1 ) ≠ ( 𝑃 ‘ 2 ) ) ∧ ( 𝐹 ‘ 0 ) ≠ ( 𝐹 ‘ 1 ) ) ) ) |
| 42 | 41 | ex | ⊢ ( ( ( 𝐺 ∈ USGraph ∧ 𝐹 ∈ Word dom ( iEdg ‘ 𝐺 ) ) ∧ ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ 2 ) ) → ( 𝑃 : ( 0 ... 2 ) ⟶ ( Vtx ‘ 𝐺 ) → ( ∀ 𝑘 ∈ { 0 , 1 } ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } → ( ( ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ 1 ) ∧ ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ 2 ) ∧ ( 𝑃 ‘ 1 ) ≠ ( 𝑃 ‘ 2 ) ) ∧ ( 𝐹 ‘ 0 ) ≠ ( 𝐹 ‘ 1 ) ) ) ) ) |
| 43 | 42 | com23 | ⊢ ( ( ( 𝐺 ∈ USGraph ∧ 𝐹 ∈ Word dom ( iEdg ‘ 𝐺 ) ) ∧ ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ 2 ) ) → ( ∀ 𝑘 ∈ { 0 , 1 } ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } → ( 𝑃 : ( 0 ... 2 ) ⟶ ( Vtx ‘ 𝐺 ) → ( ( ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ 1 ) ∧ ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ 2 ) ∧ ( 𝑃 ‘ 1 ) ≠ ( 𝑃 ‘ 2 ) ) ∧ ( 𝐹 ‘ 0 ) ≠ ( 𝐹 ‘ 1 ) ) ) ) ) |
| 44 | 43 | ex | ⊢ ( ( 𝐺 ∈ USGraph ∧ 𝐹 ∈ Word dom ( iEdg ‘ 𝐺 ) ) → ( ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ 2 ) → ( ∀ 𝑘 ∈ { 0 , 1 } ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } → ( 𝑃 : ( 0 ... 2 ) ⟶ ( Vtx ‘ 𝐺 ) → ( ( ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ 1 ) ∧ ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ 2 ) ∧ ( 𝑃 ‘ 1 ) ≠ ( 𝑃 ‘ 2 ) ) ∧ ( 𝐹 ‘ 0 ) ≠ ( 𝐹 ‘ 1 ) ) ) ) ) ) |
| 45 | fveq2 | ⊢ ( ( ♯ ‘ 𝐹 ) = 2 → ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) = ( 𝑃 ‘ 2 ) ) | |
| 46 | 45 | neeq2d | ⊢ ( ( ♯ ‘ 𝐹 ) = 2 → ( ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ↔ ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ 2 ) ) ) |
| 47 | oveq2 | ⊢ ( ( ♯ ‘ 𝐹 ) = 2 → ( 0 ..^ ( ♯ ‘ 𝐹 ) ) = ( 0 ..^ 2 ) ) | |
| 48 | fzo0to2pr | ⊢ ( 0 ..^ 2 ) = { 0 , 1 } | |
| 49 | 47 48 | eqtrdi | ⊢ ( ( ♯ ‘ 𝐹 ) = 2 → ( 0 ..^ ( ♯ ‘ 𝐹 ) ) = { 0 , 1 } ) |
| 50 | 49 | raleqdv | ⊢ ( ( ♯ ‘ 𝐹 ) = 2 → ( ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ↔ ∀ 𝑘 ∈ { 0 , 1 } ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ) ) |
| 51 | oveq2 | ⊢ ( ( ♯ ‘ 𝐹 ) = 2 → ( 0 ... ( ♯ ‘ 𝐹 ) ) = ( 0 ... 2 ) ) | |
| 52 | 51 | feq2d | ⊢ ( ( ♯ ‘ 𝐹 ) = 2 → ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 ) ↔ 𝑃 : ( 0 ... 2 ) ⟶ ( Vtx ‘ 𝐺 ) ) ) |
| 53 | 52 | imbi1d | ⊢ ( ( ♯ ‘ 𝐹 ) = 2 → ( ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 ) → ( ( ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ 1 ) ∧ ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ 2 ) ∧ ( 𝑃 ‘ 1 ) ≠ ( 𝑃 ‘ 2 ) ) ∧ ( 𝐹 ‘ 0 ) ≠ ( 𝐹 ‘ 1 ) ) ) ↔ ( 𝑃 : ( 0 ... 2 ) ⟶ ( Vtx ‘ 𝐺 ) → ( ( ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ 1 ) ∧ ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ 2 ) ∧ ( 𝑃 ‘ 1 ) ≠ ( 𝑃 ‘ 2 ) ) ∧ ( 𝐹 ‘ 0 ) ≠ ( 𝐹 ‘ 1 ) ) ) ) ) |
| 54 | 50 53 | imbi12d | ⊢ ( ( ♯ ‘ 𝐹 ) = 2 → ( ( ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } → ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 ) → ( ( ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ 1 ) ∧ ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ 2 ) ∧ ( 𝑃 ‘ 1 ) ≠ ( 𝑃 ‘ 2 ) ) ∧ ( 𝐹 ‘ 0 ) ≠ ( 𝐹 ‘ 1 ) ) ) ) ↔ ( ∀ 𝑘 ∈ { 0 , 1 } ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } → ( 𝑃 : ( 0 ... 2 ) ⟶ ( Vtx ‘ 𝐺 ) → ( ( ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ 1 ) ∧ ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ 2 ) ∧ ( 𝑃 ‘ 1 ) ≠ ( 𝑃 ‘ 2 ) ) ∧ ( 𝐹 ‘ 0 ) ≠ ( 𝐹 ‘ 1 ) ) ) ) ) ) |
| 55 | 46 54 | imbi12d | ⊢ ( ( ♯ ‘ 𝐹 ) = 2 → ( ( ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) → ( ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } → ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 ) → ( ( ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ 1 ) ∧ ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ 2 ) ∧ ( 𝑃 ‘ 1 ) ≠ ( 𝑃 ‘ 2 ) ) ∧ ( 𝐹 ‘ 0 ) ≠ ( 𝐹 ‘ 1 ) ) ) ) ) ↔ ( ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ 2 ) → ( ∀ 𝑘 ∈ { 0 , 1 } ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } → ( 𝑃 : ( 0 ... 2 ) ⟶ ( Vtx ‘ 𝐺 ) → ( ( ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ 1 ) ∧ ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ 2 ) ∧ ( 𝑃 ‘ 1 ) ≠ ( 𝑃 ‘ 2 ) ) ∧ ( 𝐹 ‘ 0 ) ≠ ( 𝐹 ‘ 1 ) ) ) ) ) ) ) |
| 56 | 44 55 | syl5ibrcom | ⊢ ( ( 𝐺 ∈ USGraph ∧ 𝐹 ∈ Word dom ( iEdg ‘ 𝐺 ) ) → ( ( ♯ ‘ 𝐹 ) = 2 → ( ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) → ( ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } → ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 ) → ( ( ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ 1 ) ∧ ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ 2 ) ∧ ( 𝑃 ‘ 1 ) ≠ ( 𝑃 ‘ 2 ) ) ∧ ( 𝐹 ‘ 0 ) ≠ ( 𝐹 ‘ 1 ) ) ) ) ) ) ) |
| 57 | 56 | impd | ⊢ ( ( 𝐺 ∈ USGraph ∧ 𝐹 ∈ Word dom ( iEdg ‘ 𝐺 ) ) → ( ( ( ♯ ‘ 𝐹 ) = 2 ∧ ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ) → ( ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } → ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 ) → ( ( ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ 1 ) ∧ ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ 2 ) ∧ ( 𝑃 ‘ 1 ) ≠ ( 𝑃 ‘ 2 ) ) ∧ ( 𝐹 ‘ 0 ) ≠ ( 𝐹 ‘ 1 ) ) ) ) ) ) |
| 58 | 57 | com24 | ⊢ ( ( 𝐺 ∈ USGraph ∧ 𝐹 ∈ Word dom ( iEdg ‘ 𝐺 ) ) → ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 ) → ( ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } → ( ( ( ♯ ‘ 𝐹 ) = 2 ∧ ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ) → ( ( ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ 1 ) ∧ ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ 2 ) ∧ ( 𝑃 ‘ 1 ) ≠ ( 𝑃 ‘ 2 ) ) ∧ ( 𝐹 ‘ 0 ) ≠ ( 𝐹 ‘ 1 ) ) ) ) ) ) |
| 59 | 58 | ex | ⊢ ( 𝐺 ∈ USGraph → ( 𝐹 ∈ Word dom ( iEdg ‘ 𝐺 ) → ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 ) → ( ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } → ( ( ( ♯ ‘ 𝐹 ) = 2 ∧ ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ) → ( ( ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ 1 ) ∧ ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ 2 ) ∧ ( 𝑃 ‘ 1 ) ≠ ( 𝑃 ‘ 2 ) ) ∧ ( 𝐹 ‘ 0 ) ≠ ( 𝐹 ‘ 1 ) ) ) ) ) ) ) |
| 60 | 59 | 3impd | ⊢ ( 𝐺 ∈ USGraph → ( ( 𝐹 ∈ Word dom ( iEdg ‘ 𝐺 ) ∧ 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 ) ∧ ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ) → ( ( ( ♯ ‘ 𝐹 ) = 2 ∧ ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ) → ( ( ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ 1 ) ∧ ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ 2 ) ∧ ( 𝑃 ‘ 1 ) ≠ ( 𝑃 ‘ 2 ) ) ∧ ( 𝐹 ‘ 0 ) ≠ ( 𝐹 ‘ 1 ) ) ) ) ) |
| 61 | 5 60 | sylbid | ⊢ ( 𝐺 ∈ USGraph → ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 → ( ( ( ♯ ‘ 𝐹 ) = 2 ∧ ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ) → ( ( ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ 1 ) ∧ ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ 2 ) ∧ ( 𝑃 ‘ 1 ) ≠ ( 𝑃 ‘ 2 ) ) ∧ ( 𝐹 ‘ 0 ) ≠ ( 𝐹 ‘ 1 ) ) ) ) ) |
| 62 | 61 | imp31 | ⊢ ( ( ( 𝐺 ∈ USGraph ∧ 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ) ∧ ( ( ♯ ‘ 𝐹 ) = 2 ∧ ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ) ) → ( ( ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ 1 ) ∧ ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ 2 ) ∧ ( 𝑃 ‘ 1 ) ≠ ( 𝑃 ‘ 2 ) ) ∧ ( 𝐹 ‘ 0 ) ≠ ( 𝐹 ‘ 1 ) ) ) |