This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma 1 for usgr2wlkspth . (Contributed by Alexander van der Vekens, 2-Mar-2018) (Revised by AV, 26-Jan-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | usgr2wlkspthlem1 | ⊢ ( ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ∧ ( 𝐺 ∈ USGraph ∧ ( ♯ ‘ 𝐹 ) = 2 ∧ ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ) ) → Fun ◡ 𝐹 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1 | ⊢ ( ( 𝐺 ∈ USGraph ∧ ( ♯ ‘ 𝐹 ) = 2 ∧ ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ) → 𝐺 ∈ USGraph ) | |
| 2 | 1 | anim2i | ⊢ ( ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ∧ ( 𝐺 ∈ USGraph ∧ ( ♯ ‘ 𝐹 ) = 2 ∧ ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ) ) → ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ∧ 𝐺 ∈ USGraph ) ) |
| 3 | 2 | ancomd | ⊢ ( ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ∧ ( 𝐺 ∈ USGraph ∧ ( ♯ ‘ 𝐹 ) = 2 ∧ ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ) ) → ( 𝐺 ∈ USGraph ∧ 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ) ) |
| 4 | 3simpc | ⊢ ( ( 𝐺 ∈ USGraph ∧ ( ♯ ‘ 𝐹 ) = 2 ∧ ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ) → ( ( ♯ ‘ 𝐹 ) = 2 ∧ ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ) ) | |
| 5 | 4 | adantl | ⊢ ( ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ∧ ( 𝐺 ∈ USGraph ∧ ( ♯ ‘ 𝐹 ) = 2 ∧ ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ) ) → ( ( ♯ ‘ 𝐹 ) = 2 ∧ ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ) ) |
| 6 | usgr2wlkneq | ⊢ ( ( ( 𝐺 ∈ USGraph ∧ 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ) ∧ ( ( ♯ ‘ 𝐹 ) = 2 ∧ ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ) ) → ( ( ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ 1 ) ∧ ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ 2 ) ∧ ( 𝑃 ‘ 1 ) ≠ ( 𝑃 ‘ 2 ) ) ∧ ( 𝐹 ‘ 0 ) ≠ ( 𝐹 ‘ 1 ) ) ) | |
| 7 | 3 5 6 | syl2anc | ⊢ ( ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ∧ ( 𝐺 ∈ USGraph ∧ ( ♯ ‘ 𝐹 ) = 2 ∧ ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ) ) → ( ( ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ 1 ) ∧ ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ 2 ) ∧ ( 𝑃 ‘ 1 ) ≠ ( 𝑃 ‘ 2 ) ) ∧ ( 𝐹 ‘ 0 ) ≠ ( 𝐹 ‘ 1 ) ) ) |
| 8 | fvexd | ⊢ ( ( ( ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ 1 ) ∧ ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ 2 ) ∧ ( 𝑃 ‘ 1 ) ≠ ( 𝑃 ‘ 2 ) ) ∧ ( 𝐹 ‘ 0 ) ≠ ( 𝐹 ‘ 1 ) ) → ( 𝐹 ‘ 0 ) ∈ V ) | |
| 9 | fvexd | ⊢ ( ( ( ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ 1 ) ∧ ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ 2 ) ∧ ( 𝑃 ‘ 1 ) ≠ ( 𝑃 ‘ 2 ) ) ∧ ( 𝐹 ‘ 0 ) ≠ ( 𝐹 ‘ 1 ) ) → ( 𝐹 ‘ 1 ) ∈ V ) | |
| 10 | simpr | ⊢ ( ( ( ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ 1 ) ∧ ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ 2 ) ∧ ( 𝑃 ‘ 1 ) ≠ ( 𝑃 ‘ 2 ) ) ∧ ( 𝐹 ‘ 0 ) ≠ ( 𝐹 ‘ 1 ) ) → ( 𝐹 ‘ 0 ) ≠ ( 𝐹 ‘ 1 ) ) | |
| 11 | 8 9 10 | 3jca | ⊢ ( ( ( ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ 1 ) ∧ ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ 2 ) ∧ ( 𝑃 ‘ 1 ) ≠ ( 𝑃 ‘ 2 ) ) ∧ ( 𝐹 ‘ 0 ) ≠ ( 𝐹 ‘ 1 ) ) → ( ( 𝐹 ‘ 0 ) ∈ V ∧ ( 𝐹 ‘ 1 ) ∈ V ∧ ( 𝐹 ‘ 0 ) ≠ ( 𝐹 ‘ 1 ) ) ) |
| 12 | funcnvs2 | ⊢ ( ( ( 𝐹 ‘ 0 ) ∈ V ∧ ( 𝐹 ‘ 1 ) ∈ V ∧ ( 𝐹 ‘ 0 ) ≠ ( 𝐹 ‘ 1 ) ) → Fun ◡ 〈“ ( 𝐹 ‘ 0 ) ( 𝐹 ‘ 1 ) ”〉 ) | |
| 13 | 7 11 12 | 3syl | ⊢ ( ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ∧ ( 𝐺 ∈ USGraph ∧ ( ♯ ‘ 𝐹 ) = 2 ∧ ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ) ) → Fun ◡ 〈“ ( 𝐹 ‘ 0 ) ( 𝐹 ‘ 1 ) ”〉 ) |
| 14 | eqid | ⊢ ( iEdg ‘ 𝐺 ) = ( iEdg ‘ 𝐺 ) | |
| 15 | 14 | wlkf | ⊢ ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 → 𝐹 ∈ Word dom ( iEdg ‘ 𝐺 ) ) |
| 16 | simp2 | ⊢ ( ( 𝐺 ∈ USGraph ∧ ( ♯ ‘ 𝐹 ) = 2 ∧ ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ) → ( ♯ ‘ 𝐹 ) = 2 ) | |
| 17 | wrdlen2s2 | ⊢ ( ( 𝐹 ∈ Word dom ( iEdg ‘ 𝐺 ) ∧ ( ♯ ‘ 𝐹 ) = 2 ) → 𝐹 = 〈“ ( 𝐹 ‘ 0 ) ( 𝐹 ‘ 1 ) ”〉 ) | |
| 18 | 15 16 17 | syl2an | ⊢ ( ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ∧ ( 𝐺 ∈ USGraph ∧ ( ♯ ‘ 𝐹 ) = 2 ∧ ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ) ) → 𝐹 = 〈“ ( 𝐹 ‘ 0 ) ( 𝐹 ‘ 1 ) ”〉 ) |
| 19 | 18 | cnveqd | ⊢ ( ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ∧ ( 𝐺 ∈ USGraph ∧ ( ♯ ‘ 𝐹 ) = 2 ∧ ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ) ) → ◡ 𝐹 = ◡ 〈“ ( 𝐹 ‘ 0 ) ( 𝐹 ‘ 1 ) ”〉 ) |
| 20 | 19 | funeqd | ⊢ ( ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ∧ ( 𝐺 ∈ USGraph ∧ ( ♯ ‘ 𝐹 ) = 2 ∧ ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ) ) → ( Fun ◡ 𝐹 ↔ Fun ◡ 〈“ ( 𝐹 ‘ 0 ) ( 𝐹 ‘ 1 ) ”〉 ) ) |
| 21 | 13 20 | mpbird | ⊢ ( ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ∧ ( 𝐺 ∈ USGraph ∧ ( ♯ ‘ 𝐹 ) = 2 ∧ ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ) ) → Fun ◡ 𝐹 ) |