This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The vertices and edges are pairwise different in a walk of length 2 in a simple graph. (Contributed by Alexander van der Vekens, 2-Mar-2018) (Revised by AV, 26-Jan-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | usgr2wlkneq | |- ( ( ( G e. USGraph /\ F ( Walks ` G ) P ) /\ ( ( # ` F ) = 2 /\ ( P ` 0 ) =/= ( P ` ( # ` F ) ) ) ) -> ( ( ( P ` 0 ) =/= ( P ` 1 ) /\ ( P ` 0 ) =/= ( P ` 2 ) /\ ( P ` 1 ) =/= ( P ` 2 ) ) /\ ( F ` 0 ) =/= ( F ` 1 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | usgrupgr | |- ( G e. USGraph -> G e. UPGraph ) |
|
| 2 | eqid | |- ( Vtx ` G ) = ( Vtx ` G ) |
|
| 3 | eqid | |- ( iEdg ` G ) = ( iEdg ` G ) |
|
| 4 | 2 3 | upgriswlk | |- ( G e. UPGraph -> ( F ( Walks ` G ) P <-> ( F e. Word dom ( iEdg ` G ) /\ P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) /\ A. k e. ( 0 ..^ ( # ` F ) ) ( ( iEdg ` G ) ` ( F ` k ) ) = { ( P ` k ) , ( P ` ( k + 1 ) ) } ) ) ) |
| 5 | 1 4 | syl | |- ( G e. USGraph -> ( F ( Walks ` G ) P <-> ( F e. Word dom ( iEdg ` G ) /\ P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) /\ A. k e. ( 0 ..^ ( # ` F ) ) ( ( iEdg ` G ) ` ( F ` k ) ) = { ( P ` k ) , ( P ` ( k + 1 ) ) } ) ) ) |
| 6 | 2wlklem | |- ( A. k e. { 0 , 1 } ( ( iEdg ` G ) ` ( F ` k ) ) = { ( P ` k ) , ( P ` ( k + 1 ) ) } <-> ( ( ( iEdg ` G ) ` ( F ` 0 ) ) = { ( P ` 0 ) , ( P ` 1 ) } /\ ( ( iEdg ` G ) ` ( F ` 1 ) ) = { ( P ` 1 ) , ( P ` 2 ) } ) ) |
|
| 7 | simplll | |- ( ( ( ( G e. USGraph /\ F e. Word dom ( iEdg ` G ) ) /\ ( P ` 0 ) =/= ( P ` 2 ) ) /\ P : ( 0 ... 2 ) --> ( Vtx ` G ) ) -> G e. USGraph ) |
|
| 8 | fvex | |- ( P ` 0 ) e. _V |
|
| 9 | 3 | usgrnloopv | |- ( ( G e. USGraph /\ ( P ` 0 ) e. _V ) -> ( ( ( iEdg ` G ) ` ( F ` 0 ) ) = { ( P ` 0 ) , ( P ` 1 ) } -> ( P ` 0 ) =/= ( P ` 1 ) ) ) |
| 10 | 7 8 9 | sylancl | |- ( ( ( ( G e. USGraph /\ F e. Word dom ( iEdg ` G ) ) /\ ( P ` 0 ) =/= ( P ` 2 ) ) /\ P : ( 0 ... 2 ) --> ( Vtx ` G ) ) -> ( ( ( iEdg ` G ) ` ( F ` 0 ) ) = { ( P ` 0 ) , ( P ` 1 ) } -> ( P ` 0 ) =/= ( P ` 1 ) ) ) |
| 11 | fvex | |- ( P ` 1 ) e. _V |
|
| 12 | 3 | usgrnloopv | |- ( ( G e. USGraph /\ ( P ` 1 ) e. _V ) -> ( ( ( iEdg ` G ) ` ( F ` 1 ) ) = { ( P ` 1 ) , ( P ` 2 ) } -> ( P ` 1 ) =/= ( P ` 2 ) ) ) |
| 13 | 7 11 12 | sylancl | |- ( ( ( ( G e. USGraph /\ F e. Word dom ( iEdg ` G ) ) /\ ( P ` 0 ) =/= ( P ` 2 ) ) /\ P : ( 0 ... 2 ) --> ( Vtx ` G ) ) -> ( ( ( iEdg ` G ) ` ( F ` 1 ) ) = { ( P ` 1 ) , ( P ` 2 ) } -> ( P ` 1 ) =/= ( P ` 2 ) ) ) |
| 14 | 10 13 | anim12d | |- ( ( ( ( G e. USGraph /\ F e. Word dom ( iEdg ` G ) ) /\ ( P ` 0 ) =/= ( P ` 2 ) ) /\ P : ( 0 ... 2 ) --> ( Vtx ` G ) ) -> ( ( ( ( iEdg ` G ) ` ( F ` 0 ) ) = { ( P ` 0 ) , ( P ` 1 ) } /\ ( ( iEdg ` G ) ` ( F ` 1 ) ) = { ( P ` 1 ) , ( P ` 2 ) } ) -> ( ( P ` 0 ) =/= ( P ` 1 ) /\ ( P ` 1 ) =/= ( P ` 2 ) ) ) ) |
| 15 | fveqeq2 | |- ( ( F ` 0 ) = ( F ` 1 ) -> ( ( ( iEdg ` G ) ` ( F ` 0 ) ) = { ( P ` 0 ) , ( P ` 1 ) } <-> ( ( iEdg ` G ) ` ( F ` 1 ) ) = { ( P ` 0 ) , ( P ` 1 ) } ) ) |
|
| 16 | eqtr2 | |- ( ( ( ( iEdg ` G ) ` ( F ` 1 ) ) = { ( P ` 0 ) , ( P ` 1 ) } /\ ( ( iEdg ` G ) ` ( F ` 1 ) ) = { ( P ` 1 ) , ( P ` 2 ) } ) -> { ( P ` 0 ) , ( P ` 1 ) } = { ( P ` 1 ) , ( P ` 2 ) } ) |
|
| 17 | prcom | |- { ( P ` 1 ) , ( P ` 2 ) } = { ( P ` 2 ) , ( P ` 1 ) } |
|
| 18 | 17 | eqeq2i | |- ( { ( P ` 0 ) , ( P ` 1 ) } = { ( P ` 1 ) , ( P ` 2 ) } <-> { ( P ` 0 ) , ( P ` 1 ) } = { ( P ` 2 ) , ( P ` 1 ) } ) |
| 19 | fvex | |- ( P ` 2 ) e. _V |
|
| 20 | 8 19 | preqr1 | |- ( { ( P ` 0 ) , ( P ` 1 ) } = { ( P ` 2 ) , ( P ` 1 ) } -> ( P ` 0 ) = ( P ` 2 ) ) |
| 21 | 18 20 | sylbi | |- ( { ( P ` 0 ) , ( P ` 1 ) } = { ( P ` 1 ) , ( P ` 2 ) } -> ( P ` 0 ) = ( P ` 2 ) ) |
| 22 | 16 21 | syl | |- ( ( ( ( iEdg ` G ) ` ( F ` 1 ) ) = { ( P ` 0 ) , ( P ` 1 ) } /\ ( ( iEdg ` G ) ` ( F ` 1 ) ) = { ( P ` 1 ) , ( P ` 2 ) } ) -> ( P ` 0 ) = ( P ` 2 ) ) |
| 23 | 22 | ex | |- ( ( ( iEdg ` G ) ` ( F ` 1 ) ) = { ( P ` 0 ) , ( P ` 1 ) } -> ( ( ( iEdg ` G ) ` ( F ` 1 ) ) = { ( P ` 1 ) , ( P ` 2 ) } -> ( P ` 0 ) = ( P ` 2 ) ) ) |
| 24 | 15 23 | biimtrdi | |- ( ( F ` 0 ) = ( F ` 1 ) -> ( ( ( iEdg ` G ) ` ( F ` 0 ) ) = { ( P ` 0 ) , ( P ` 1 ) } -> ( ( ( iEdg ` G ) ` ( F ` 1 ) ) = { ( P ` 1 ) , ( P ` 2 ) } -> ( P ` 0 ) = ( P ` 2 ) ) ) ) |
| 25 | 24 | impd | |- ( ( F ` 0 ) = ( F ` 1 ) -> ( ( ( ( iEdg ` G ) ` ( F ` 0 ) ) = { ( P ` 0 ) , ( P ` 1 ) } /\ ( ( iEdg ` G ) ` ( F ` 1 ) ) = { ( P ` 1 ) , ( P ` 2 ) } ) -> ( P ` 0 ) = ( P ` 2 ) ) ) |
| 26 | 25 | com12 | |- ( ( ( ( iEdg ` G ) ` ( F ` 0 ) ) = { ( P ` 0 ) , ( P ` 1 ) } /\ ( ( iEdg ` G ) ` ( F ` 1 ) ) = { ( P ` 1 ) , ( P ` 2 ) } ) -> ( ( F ` 0 ) = ( F ` 1 ) -> ( P ` 0 ) = ( P ` 2 ) ) ) |
| 27 | 26 | necon3d | |- ( ( ( ( iEdg ` G ) ` ( F ` 0 ) ) = { ( P ` 0 ) , ( P ` 1 ) } /\ ( ( iEdg ` G ) ` ( F ` 1 ) ) = { ( P ` 1 ) , ( P ` 2 ) } ) -> ( ( P ` 0 ) =/= ( P ` 2 ) -> ( F ` 0 ) =/= ( F ` 1 ) ) ) |
| 28 | 27 | com12 | |- ( ( P ` 0 ) =/= ( P ` 2 ) -> ( ( ( ( iEdg ` G ) ` ( F ` 0 ) ) = { ( P ` 0 ) , ( P ` 1 ) } /\ ( ( iEdg ` G ) ` ( F ` 1 ) ) = { ( P ` 1 ) , ( P ` 2 ) } ) -> ( F ` 0 ) =/= ( F ` 1 ) ) ) |
| 29 | 28 | adantr | |- ( ( ( P ` 0 ) =/= ( P ` 2 ) /\ ( ( P ` 0 ) =/= ( P ` 1 ) /\ ( P ` 1 ) =/= ( P ` 2 ) ) ) -> ( ( ( ( iEdg ` G ) ` ( F ` 0 ) ) = { ( P ` 0 ) , ( P ` 1 ) } /\ ( ( iEdg ` G ) ` ( F ` 1 ) ) = { ( P ` 1 ) , ( P ` 2 ) } ) -> ( F ` 0 ) =/= ( F ` 1 ) ) ) |
| 30 | simpl | |- ( ( ( P ` 0 ) =/= ( P ` 1 ) /\ ( P ` 1 ) =/= ( P ` 2 ) ) -> ( P ` 0 ) =/= ( P ` 1 ) ) |
|
| 31 | 30 | adantl | |- ( ( ( P ` 0 ) =/= ( P ` 2 ) /\ ( ( P ` 0 ) =/= ( P ` 1 ) /\ ( P ` 1 ) =/= ( P ` 2 ) ) ) -> ( P ` 0 ) =/= ( P ` 1 ) ) |
| 32 | simpl | |- ( ( ( P ` 0 ) =/= ( P ` 2 ) /\ ( ( P ` 0 ) =/= ( P ` 1 ) /\ ( P ` 1 ) =/= ( P ` 2 ) ) ) -> ( P ` 0 ) =/= ( P ` 2 ) ) |
|
| 33 | simprr | |- ( ( ( P ` 0 ) =/= ( P ` 2 ) /\ ( ( P ` 0 ) =/= ( P ` 1 ) /\ ( P ` 1 ) =/= ( P ` 2 ) ) ) -> ( P ` 1 ) =/= ( P ` 2 ) ) |
|
| 34 | 31 32 33 | 3jca | |- ( ( ( P ` 0 ) =/= ( P ` 2 ) /\ ( ( P ` 0 ) =/= ( P ` 1 ) /\ ( P ` 1 ) =/= ( P ` 2 ) ) ) -> ( ( P ` 0 ) =/= ( P ` 1 ) /\ ( P ` 0 ) =/= ( P ` 2 ) /\ ( P ` 1 ) =/= ( P ` 2 ) ) ) |
| 35 | 29 34 | jctild | |- ( ( ( P ` 0 ) =/= ( P ` 2 ) /\ ( ( P ` 0 ) =/= ( P ` 1 ) /\ ( P ` 1 ) =/= ( P ` 2 ) ) ) -> ( ( ( ( iEdg ` G ) ` ( F ` 0 ) ) = { ( P ` 0 ) , ( P ` 1 ) } /\ ( ( iEdg ` G ) ` ( F ` 1 ) ) = { ( P ` 1 ) , ( P ` 2 ) } ) -> ( ( ( P ` 0 ) =/= ( P ` 1 ) /\ ( P ` 0 ) =/= ( P ` 2 ) /\ ( P ` 1 ) =/= ( P ` 2 ) ) /\ ( F ` 0 ) =/= ( F ` 1 ) ) ) ) |
| 36 | 35 | ex | |- ( ( P ` 0 ) =/= ( P ` 2 ) -> ( ( ( P ` 0 ) =/= ( P ` 1 ) /\ ( P ` 1 ) =/= ( P ` 2 ) ) -> ( ( ( ( iEdg ` G ) ` ( F ` 0 ) ) = { ( P ` 0 ) , ( P ` 1 ) } /\ ( ( iEdg ` G ) ` ( F ` 1 ) ) = { ( P ` 1 ) , ( P ` 2 ) } ) -> ( ( ( P ` 0 ) =/= ( P ` 1 ) /\ ( P ` 0 ) =/= ( P ` 2 ) /\ ( P ` 1 ) =/= ( P ` 2 ) ) /\ ( F ` 0 ) =/= ( F ` 1 ) ) ) ) ) |
| 37 | 36 | com23 | |- ( ( P ` 0 ) =/= ( P ` 2 ) -> ( ( ( ( iEdg ` G ) ` ( F ` 0 ) ) = { ( P ` 0 ) , ( P ` 1 ) } /\ ( ( iEdg ` G ) ` ( F ` 1 ) ) = { ( P ` 1 ) , ( P ` 2 ) } ) -> ( ( ( P ` 0 ) =/= ( P ` 1 ) /\ ( P ` 1 ) =/= ( P ` 2 ) ) -> ( ( ( P ` 0 ) =/= ( P ` 1 ) /\ ( P ` 0 ) =/= ( P ` 2 ) /\ ( P ` 1 ) =/= ( P ` 2 ) ) /\ ( F ` 0 ) =/= ( F ` 1 ) ) ) ) ) |
| 38 | 37 | adantl | |- ( ( ( G e. USGraph /\ F e. Word dom ( iEdg ` G ) ) /\ ( P ` 0 ) =/= ( P ` 2 ) ) -> ( ( ( ( iEdg ` G ) ` ( F ` 0 ) ) = { ( P ` 0 ) , ( P ` 1 ) } /\ ( ( iEdg ` G ) ` ( F ` 1 ) ) = { ( P ` 1 ) , ( P ` 2 ) } ) -> ( ( ( P ` 0 ) =/= ( P ` 1 ) /\ ( P ` 1 ) =/= ( P ` 2 ) ) -> ( ( ( P ` 0 ) =/= ( P ` 1 ) /\ ( P ` 0 ) =/= ( P ` 2 ) /\ ( P ` 1 ) =/= ( P ` 2 ) ) /\ ( F ` 0 ) =/= ( F ` 1 ) ) ) ) ) |
| 39 | 38 | adantr | |- ( ( ( ( G e. USGraph /\ F e. Word dom ( iEdg ` G ) ) /\ ( P ` 0 ) =/= ( P ` 2 ) ) /\ P : ( 0 ... 2 ) --> ( Vtx ` G ) ) -> ( ( ( ( iEdg ` G ) ` ( F ` 0 ) ) = { ( P ` 0 ) , ( P ` 1 ) } /\ ( ( iEdg ` G ) ` ( F ` 1 ) ) = { ( P ` 1 ) , ( P ` 2 ) } ) -> ( ( ( P ` 0 ) =/= ( P ` 1 ) /\ ( P ` 1 ) =/= ( P ` 2 ) ) -> ( ( ( P ` 0 ) =/= ( P ` 1 ) /\ ( P ` 0 ) =/= ( P ` 2 ) /\ ( P ` 1 ) =/= ( P ` 2 ) ) /\ ( F ` 0 ) =/= ( F ` 1 ) ) ) ) ) |
| 40 | 14 39 | mpdd | |- ( ( ( ( G e. USGraph /\ F e. Word dom ( iEdg ` G ) ) /\ ( P ` 0 ) =/= ( P ` 2 ) ) /\ P : ( 0 ... 2 ) --> ( Vtx ` G ) ) -> ( ( ( ( iEdg ` G ) ` ( F ` 0 ) ) = { ( P ` 0 ) , ( P ` 1 ) } /\ ( ( iEdg ` G ) ` ( F ` 1 ) ) = { ( P ` 1 ) , ( P ` 2 ) } ) -> ( ( ( P ` 0 ) =/= ( P ` 1 ) /\ ( P ` 0 ) =/= ( P ` 2 ) /\ ( P ` 1 ) =/= ( P ` 2 ) ) /\ ( F ` 0 ) =/= ( F ` 1 ) ) ) ) |
| 41 | 6 40 | biimtrid | |- ( ( ( ( G e. USGraph /\ F e. Word dom ( iEdg ` G ) ) /\ ( P ` 0 ) =/= ( P ` 2 ) ) /\ P : ( 0 ... 2 ) --> ( Vtx ` G ) ) -> ( A. k e. { 0 , 1 } ( ( iEdg ` G ) ` ( F ` k ) ) = { ( P ` k ) , ( P ` ( k + 1 ) ) } -> ( ( ( P ` 0 ) =/= ( P ` 1 ) /\ ( P ` 0 ) =/= ( P ` 2 ) /\ ( P ` 1 ) =/= ( P ` 2 ) ) /\ ( F ` 0 ) =/= ( F ` 1 ) ) ) ) |
| 42 | 41 | ex | |- ( ( ( G e. USGraph /\ F e. Word dom ( iEdg ` G ) ) /\ ( P ` 0 ) =/= ( P ` 2 ) ) -> ( P : ( 0 ... 2 ) --> ( Vtx ` G ) -> ( A. k e. { 0 , 1 } ( ( iEdg ` G ) ` ( F ` k ) ) = { ( P ` k ) , ( P ` ( k + 1 ) ) } -> ( ( ( P ` 0 ) =/= ( P ` 1 ) /\ ( P ` 0 ) =/= ( P ` 2 ) /\ ( P ` 1 ) =/= ( P ` 2 ) ) /\ ( F ` 0 ) =/= ( F ` 1 ) ) ) ) ) |
| 43 | 42 | com23 | |- ( ( ( G e. USGraph /\ F e. Word dom ( iEdg ` G ) ) /\ ( P ` 0 ) =/= ( P ` 2 ) ) -> ( A. k e. { 0 , 1 } ( ( iEdg ` G ) ` ( F ` k ) ) = { ( P ` k ) , ( P ` ( k + 1 ) ) } -> ( P : ( 0 ... 2 ) --> ( Vtx ` G ) -> ( ( ( P ` 0 ) =/= ( P ` 1 ) /\ ( P ` 0 ) =/= ( P ` 2 ) /\ ( P ` 1 ) =/= ( P ` 2 ) ) /\ ( F ` 0 ) =/= ( F ` 1 ) ) ) ) ) |
| 44 | 43 | ex | |- ( ( G e. USGraph /\ F e. Word dom ( iEdg ` G ) ) -> ( ( P ` 0 ) =/= ( P ` 2 ) -> ( A. k e. { 0 , 1 } ( ( iEdg ` G ) ` ( F ` k ) ) = { ( P ` k ) , ( P ` ( k + 1 ) ) } -> ( P : ( 0 ... 2 ) --> ( Vtx ` G ) -> ( ( ( P ` 0 ) =/= ( P ` 1 ) /\ ( P ` 0 ) =/= ( P ` 2 ) /\ ( P ` 1 ) =/= ( P ` 2 ) ) /\ ( F ` 0 ) =/= ( F ` 1 ) ) ) ) ) ) |
| 45 | fveq2 | |- ( ( # ` F ) = 2 -> ( P ` ( # ` F ) ) = ( P ` 2 ) ) |
|
| 46 | 45 | neeq2d | |- ( ( # ` F ) = 2 -> ( ( P ` 0 ) =/= ( P ` ( # ` F ) ) <-> ( P ` 0 ) =/= ( P ` 2 ) ) ) |
| 47 | oveq2 | |- ( ( # ` F ) = 2 -> ( 0 ..^ ( # ` F ) ) = ( 0 ..^ 2 ) ) |
|
| 48 | fzo0to2pr | |- ( 0 ..^ 2 ) = { 0 , 1 } |
|
| 49 | 47 48 | eqtrdi | |- ( ( # ` F ) = 2 -> ( 0 ..^ ( # ` F ) ) = { 0 , 1 } ) |
| 50 | 49 | raleqdv | |- ( ( # ` F ) = 2 -> ( A. k e. ( 0 ..^ ( # ` F ) ) ( ( iEdg ` G ) ` ( F ` k ) ) = { ( P ` k ) , ( P ` ( k + 1 ) ) } <-> A. k e. { 0 , 1 } ( ( iEdg ` G ) ` ( F ` k ) ) = { ( P ` k ) , ( P ` ( k + 1 ) ) } ) ) |
| 51 | oveq2 | |- ( ( # ` F ) = 2 -> ( 0 ... ( # ` F ) ) = ( 0 ... 2 ) ) |
|
| 52 | 51 | feq2d | |- ( ( # ` F ) = 2 -> ( P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) <-> P : ( 0 ... 2 ) --> ( Vtx ` G ) ) ) |
| 53 | 52 | imbi1d | |- ( ( # ` F ) = 2 -> ( ( P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) -> ( ( ( P ` 0 ) =/= ( P ` 1 ) /\ ( P ` 0 ) =/= ( P ` 2 ) /\ ( P ` 1 ) =/= ( P ` 2 ) ) /\ ( F ` 0 ) =/= ( F ` 1 ) ) ) <-> ( P : ( 0 ... 2 ) --> ( Vtx ` G ) -> ( ( ( P ` 0 ) =/= ( P ` 1 ) /\ ( P ` 0 ) =/= ( P ` 2 ) /\ ( P ` 1 ) =/= ( P ` 2 ) ) /\ ( F ` 0 ) =/= ( F ` 1 ) ) ) ) ) |
| 54 | 50 53 | imbi12d | |- ( ( # ` F ) = 2 -> ( ( A. k e. ( 0 ..^ ( # ` F ) ) ( ( iEdg ` G ) ` ( F ` k ) ) = { ( P ` k ) , ( P ` ( k + 1 ) ) } -> ( P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) -> ( ( ( P ` 0 ) =/= ( P ` 1 ) /\ ( P ` 0 ) =/= ( P ` 2 ) /\ ( P ` 1 ) =/= ( P ` 2 ) ) /\ ( F ` 0 ) =/= ( F ` 1 ) ) ) ) <-> ( A. k e. { 0 , 1 } ( ( iEdg ` G ) ` ( F ` k ) ) = { ( P ` k ) , ( P ` ( k + 1 ) ) } -> ( P : ( 0 ... 2 ) --> ( Vtx ` G ) -> ( ( ( P ` 0 ) =/= ( P ` 1 ) /\ ( P ` 0 ) =/= ( P ` 2 ) /\ ( P ` 1 ) =/= ( P ` 2 ) ) /\ ( F ` 0 ) =/= ( F ` 1 ) ) ) ) ) ) |
| 55 | 46 54 | imbi12d | |- ( ( # ` F ) = 2 -> ( ( ( P ` 0 ) =/= ( P ` ( # ` F ) ) -> ( A. k e. ( 0 ..^ ( # ` F ) ) ( ( iEdg ` G ) ` ( F ` k ) ) = { ( P ` k ) , ( P ` ( k + 1 ) ) } -> ( P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) -> ( ( ( P ` 0 ) =/= ( P ` 1 ) /\ ( P ` 0 ) =/= ( P ` 2 ) /\ ( P ` 1 ) =/= ( P ` 2 ) ) /\ ( F ` 0 ) =/= ( F ` 1 ) ) ) ) ) <-> ( ( P ` 0 ) =/= ( P ` 2 ) -> ( A. k e. { 0 , 1 } ( ( iEdg ` G ) ` ( F ` k ) ) = { ( P ` k ) , ( P ` ( k + 1 ) ) } -> ( P : ( 0 ... 2 ) --> ( Vtx ` G ) -> ( ( ( P ` 0 ) =/= ( P ` 1 ) /\ ( P ` 0 ) =/= ( P ` 2 ) /\ ( P ` 1 ) =/= ( P ` 2 ) ) /\ ( F ` 0 ) =/= ( F ` 1 ) ) ) ) ) ) ) |
| 56 | 44 55 | syl5ibrcom | |- ( ( G e. USGraph /\ F e. Word dom ( iEdg ` G ) ) -> ( ( # ` F ) = 2 -> ( ( P ` 0 ) =/= ( P ` ( # ` F ) ) -> ( A. k e. ( 0 ..^ ( # ` F ) ) ( ( iEdg ` G ) ` ( F ` k ) ) = { ( P ` k ) , ( P ` ( k + 1 ) ) } -> ( P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) -> ( ( ( P ` 0 ) =/= ( P ` 1 ) /\ ( P ` 0 ) =/= ( P ` 2 ) /\ ( P ` 1 ) =/= ( P ` 2 ) ) /\ ( F ` 0 ) =/= ( F ` 1 ) ) ) ) ) ) ) |
| 57 | 56 | impd | |- ( ( G e. USGraph /\ F e. Word dom ( iEdg ` G ) ) -> ( ( ( # ` F ) = 2 /\ ( P ` 0 ) =/= ( P ` ( # ` F ) ) ) -> ( A. k e. ( 0 ..^ ( # ` F ) ) ( ( iEdg ` G ) ` ( F ` k ) ) = { ( P ` k ) , ( P ` ( k + 1 ) ) } -> ( P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) -> ( ( ( P ` 0 ) =/= ( P ` 1 ) /\ ( P ` 0 ) =/= ( P ` 2 ) /\ ( P ` 1 ) =/= ( P ` 2 ) ) /\ ( F ` 0 ) =/= ( F ` 1 ) ) ) ) ) ) |
| 58 | 57 | com24 | |- ( ( G e. USGraph /\ F e. Word dom ( iEdg ` G ) ) -> ( P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) -> ( A. k e. ( 0 ..^ ( # ` F ) ) ( ( iEdg ` G ) ` ( F ` k ) ) = { ( P ` k ) , ( P ` ( k + 1 ) ) } -> ( ( ( # ` F ) = 2 /\ ( P ` 0 ) =/= ( P ` ( # ` F ) ) ) -> ( ( ( P ` 0 ) =/= ( P ` 1 ) /\ ( P ` 0 ) =/= ( P ` 2 ) /\ ( P ` 1 ) =/= ( P ` 2 ) ) /\ ( F ` 0 ) =/= ( F ` 1 ) ) ) ) ) ) |
| 59 | 58 | ex | |- ( G e. USGraph -> ( F e. Word dom ( iEdg ` G ) -> ( P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) -> ( A. k e. ( 0 ..^ ( # ` F ) ) ( ( iEdg ` G ) ` ( F ` k ) ) = { ( P ` k ) , ( P ` ( k + 1 ) ) } -> ( ( ( # ` F ) = 2 /\ ( P ` 0 ) =/= ( P ` ( # ` F ) ) ) -> ( ( ( P ` 0 ) =/= ( P ` 1 ) /\ ( P ` 0 ) =/= ( P ` 2 ) /\ ( P ` 1 ) =/= ( P ` 2 ) ) /\ ( F ` 0 ) =/= ( F ` 1 ) ) ) ) ) ) ) |
| 60 | 59 | 3impd | |- ( G e. USGraph -> ( ( F e. Word dom ( iEdg ` G ) /\ P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) /\ A. k e. ( 0 ..^ ( # ` F ) ) ( ( iEdg ` G ) ` ( F ` k ) ) = { ( P ` k ) , ( P ` ( k + 1 ) ) } ) -> ( ( ( # ` F ) = 2 /\ ( P ` 0 ) =/= ( P ` ( # ` F ) ) ) -> ( ( ( P ` 0 ) =/= ( P ` 1 ) /\ ( P ` 0 ) =/= ( P ` 2 ) /\ ( P ` 1 ) =/= ( P ` 2 ) ) /\ ( F ` 0 ) =/= ( F ` 1 ) ) ) ) ) |
| 61 | 5 60 | sylbid | |- ( G e. USGraph -> ( F ( Walks ` G ) P -> ( ( ( # ` F ) = 2 /\ ( P ` 0 ) =/= ( P ` ( # ` F ) ) ) -> ( ( ( P ` 0 ) =/= ( P ` 1 ) /\ ( P ` 0 ) =/= ( P ` 2 ) /\ ( P ` 1 ) =/= ( P ` 2 ) ) /\ ( F ` 0 ) =/= ( F ` 1 ) ) ) ) ) |
| 62 | 61 | imp31 | |- ( ( ( G e. USGraph /\ F ( Walks ` G ) P ) /\ ( ( # ` F ) = 2 /\ ( P ` 0 ) =/= ( P ` ( # ` F ) ) ) ) -> ( ( ( P ` 0 ) =/= ( P ` 1 ) /\ ( P ` 0 ) =/= ( P ` 2 ) /\ ( P ` 1 ) =/= ( P ` 2 ) ) /\ ( F ` 0 ) =/= ( F ` 1 ) ) ) |