This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A one-to-one function with a domain with at least two different elements in terms of function values. (Contributed by Alexander van der Vekens, 2-Mar-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | f12dfv.a | ⊢ 𝐴 = { 𝑋 , 𝑌 } | |
| Assertion | f12dfv | ⊢ ( ( ( 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉 ) ∧ 𝑋 ≠ 𝑌 ) → ( 𝐹 : 𝐴 –1-1→ 𝐵 ↔ ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ ( 𝐹 ‘ 𝑋 ) ≠ ( 𝐹 ‘ 𝑌 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f12dfv.a | ⊢ 𝐴 = { 𝑋 , 𝑌 } | |
| 2 | dff14b | ⊢ ( 𝐹 : 𝐴 –1-1→ 𝐵 ↔ ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ ( 𝐴 ∖ { 𝑥 } ) ( 𝐹 ‘ 𝑥 ) ≠ ( 𝐹 ‘ 𝑦 ) ) ) | |
| 3 | 1 | raleqi | ⊢ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ ( 𝐴 ∖ { 𝑥 } ) ( 𝐹 ‘ 𝑥 ) ≠ ( 𝐹 ‘ 𝑦 ) ↔ ∀ 𝑥 ∈ { 𝑋 , 𝑌 } ∀ 𝑦 ∈ ( 𝐴 ∖ { 𝑥 } ) ( 𝐹 ‘ 𝑥 ) ≠ ( 𝐹 ‘ 𝑦 ) ) |
| 4 | sneq | ⊢ ( 𝑥 = 𝑋 → { 𝑥 } = { 𝑋 } ) | |
| 5 | 4 | difeq2d | ⊢ ( 𝑥 = 𝑋 → ( 𝐴 ∖ { 𝑥 } ) = ( 𝐴 ∖ { 𝑋 } ) ) |
| 6 | fveq2 | ⊢ ( 𝑥 = 𝑋 → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑋 ) ) | |
| 7 | 6 | neeq1d | ⊢ ( 𝑥 = 𝑋 → ( ( 𝐹 ‘ 𝑥 ) ≠ ( 𝐹 ‘ 𝑦 ) ↔ ( 𝐹 ‘ 𝑋 ) ≠ ( 𝐹 ‘ 𝑦 ) ) ) |
| 8 | 5 7 | raleqbidv | ⊢ ( 𝑥 = 𝑋 → ( ∀ 𝑦 ∈ ( 𝐴 ∖ { 𝑥 } ) ( 𝐹 ‘ 𝑥 ) ≠ ( 𝐹 ‘ 𝑦 ) ↔ ∀ 𝑦 ∈ ( 𝐴 ∖ { 𝑋 } ) ( 𝐹 ‘ 𝑋 ) ≠ ( 𝐹 ‘ 𝑦 ) ) ) |
| 9 | sneq | ⊢ ( 𝑥 = 𝑌 → { 𝑥 } = { 𝑌 } ) | |
| 10 | 9 | difeq2d | ⊢ ( 𝑥 = 𝑌 → ( 𝐴 ∖ { 𝑥 } ) = ( 𝐴 ∖ { 𝑌 } ) ) |
| 11 | fveq2 | ⊢ ( 𝑥 = 𝑌 → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑌 ) ) | |
| 12 | 11 | neeq1d | ⊢ ( 𝑥 = 𝑌 → ( ( 𝐹 ‘ 𝑥 ) ≠ ( 𝐹 ‘ 𝑦 ) ↔ ( 𝐹 ‘ 𝑌 ) ≠ ( 𝐹 ‘ 𝑦 ) ) ) |
| 13 | 10 12 | raleqbidv | ⊢ ( 𝑥 = 𝑌 → ( ∀ 𝑦 ∈ ( 𝐴 ∖ { 𝑥 } ) ( 𝐹 ‘ 𝑥 ) ≠ ( 𝐹 ‘ 𝑦 ) ↔ ∀ 𝑦 ∈ ( 𝐴 ∖ { 𝑌 } ) ( 𝐹 ‘ 𝑌 ) ≠ ( 𝐹 ‘ 𝑦 ) ) ) |
| 14 | 8 13 | ralprg | ⊢ ( ( 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉 ) → ( ∀ 𝑥 ∈ { 𝑋 , 𝑌 } ∀ 𝑦 ∈ ( 𝐴 ∖ { 𝑥 } ) ( 𝐹 ‘ 𝑥 ) ≠ ( 𝐹 ‘ 𝑦 ) ↔ ( ∀ 𝑦 ∈ ( 𝐴 ∖ { 𝑋 } ) ( 𝐹 ‘ 𝑋 ) ≠ ( 𝐹 ‘ 𝑦 ) ∧ ∀ 𝑦 ∈ ( 𝐴 ∖ { 𝑌 } ) ( 𝐹 ‘ 𝑌 ) ≠ ( 𝐹 ‘ 𝑦 ) ) ) ) |
| 15 | 14 | adantr | ⊢ ( ( ( 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉 ) ∧ 𝑋 ≠ 𝑌 ) → ( ∀ 𝑥 ∈ { 𝑋 , 𝑌 } ∀ 𝑦 ∈ ( 𝐴 ∖ { 𝑥 } ) ( 𝐹 ‘ 𝑥 ) ≠ ( 𝐹 ‘ 𝑦 ) ↔ ( ∀ 𝑦 ∈ ( 𝐴 ∖ { 𝑋 } ) ( 𝐹 ‘ 𝑋 ) ≠ ( 𝐹 ‘ 𝑦 ) ∧ ∀ 𝑦 ∈ ( 𝐴 ∖ { 𝑌 } ) ( 𝐹 ‘ 𝑌 ) ≠ ( 𝐹 ‘ 𝑦 ) ) ) ) |
| 16 | 1 | difeq1i | ⊢ ( 𝐴 ∖ { 𝑋 } ) = ( { 𝑋 , 𝑌 } ∖ { 𝑋 } ) |
| 17 | difprsn1 | ⊢ ( 𝑋 ≠ 𝑌 → ( { 𝑋 , 𝑌 } ∖ { 𝑋 } ) = { 𝑌 } ) | |
| 18 | 16 17 | eqtrid | ⊢ ( 𝑋 ≠ 𝑌 → ( 𝐴 ∖ { 𝑋 } ) = { 𝑌 } ) |
| 19 | 18 | adantl | ⊢ ( ( ( 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉 ) ∧ 𝑋 ≠ 𝑌 ) → ( 𝐴 ∖ { 𝑋 } ) = { 𝑌 } ) |
| 20 | 19 | raleqdv | ⊢ ( ( ( 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉 ) ∧ 𝑋 ≠ 𝑌 ) → ( ∀ 𝑦 ∈ ( 𝐴 ∖ { 𝑋 } ) ( 𝐹 ‘ 𝑋 ) ≠ ( 𝐹 ‘ 𝑦 ) ↔ ∀ 𝑦 ∈ { 𝑌 } ( 𝐹 ‘ 𝑋 ) ≠ ( 𝐹 ‘ 𝑦 ) ) ) |
| 21 | fveq2 | ⊢ ( 𝑦 = 𝑌 → ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑌 ) ) | |
| 22 | 21 | neeq2d | ⊢ ( 𝑦 = 𝑌 → ( ( 𝐹 ‘ 𝑋 ) ≠ ( 𝐹 ‘ 𝑦 ) ↔ ( 𝐹 ‘ 𝑋 ) ≠ ( 𝐹 ‘ 𝑌 ) ) ) |
| 23 | 22 | ralsng | ⊢ ( 𝑌 ∈ 𝑉 → ( ∀ 𝑦 ∈ { 𝑌 } ( 𝐹 ‘ 𝑋 ) ≠ ( 𝐹 ‘ 𝑦 ) ↔ ( 𝐹 ‘ 𝑋 ) ≠ ( 𝐹 ‘ 𝑌 ) ) ) |
| 24 | 23 | adantl | ⊢ ( ( 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉 ) → ( ∀ 𝑦 ∈ { 𝑌 } ( 𝐹 ‘ 𝑋 ) ≠ ( 𝐹 ‘ 𝑦 ) ↔ ( 𝐹 ‘ 𝑋 ) ≠ ( 𝐹 ‘ 𝑌 ) ) ) |
| 25 | 24 | adantr | ⊢ ( ( ( 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉 ) ∧ 𝑋 ≠ 𝑌 ) → ( ∀ 𝑦 ∈ { 𝑌 } ( 𝐹 ‘ 𝑋 ) ≠ ( 𝐹 ‘ 𝑦 ) ↔ ( 𝐹 ‘ 𝑋 ) ≠ ( 𝐹 ‘ 𝑌 ) ) ) |
| 26 | 20 25 | bitrd | ⊢ ( ( ( 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉 ) ∧ 𝑋 ≠ 𝑌 ) → ( ∀ 𝑦 ∈ ( 𝐴 ∖ { 𝑋 } ) ( 𝐹 ‘ 𝑋 ) ≠ ( 𝐹 ‘ 𝑦 ) ↔ ( 𝐹 ‘ 𝑋 ) ≠ ( 𝐹 ‘ 𝑌 ) ) ) |
| 27 | 1 | difeq1i | ⊢ ( 𝐴 ∖ { 𝑌 } ) = ( { 𝑋 , 𝑌 } ∖ { 𝑌 } ) |
| 28 | difprsn2 | ⊢ ( 𝑋 ≠ 𝑌 → ( { 𝑋 , 𝑌 } ∖ { 𝑌 } ) = { 𝑋 } ) | |
| 29 | 27 28 | eqtrid | ⊢ ( 𝑋 ≠ 𝑌 → ( 𝐴 ∖ { 𝑌 } ) = { 𝑋 } ) |
| 30 | 29 | adantl | ⊢ ( ( ( 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉 ) ∧ 𝑋 ≠ 𝑌 ) → ( 𝐴 ∖ { 𝑌 } ) = { 𝑋 } ) |
| 31 | 30 | raleqdv | ⊢ ( ( ( 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉 ) ∧ 𝑋 ≠ 𝑌 ) → ( ∀ 𝑦 ∈ ( 𝐴 ∖ { 𝑌 } ) ( 𝐹 ‘ 𝑌 ) ≠ ( 𝐹 ‘ 𝑦 ) ↔ ∀ 𝑦 ∈ { 𝑋 } ( 𝐹 ‘ 𝑌 ) ≠ ( 𝐹 ‘ 𝑦 ) ) ) |
| 32 | fveq2 | ⊢ ( 𝑦 = 𝑋 → ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑋 ) ) | |
| 33 | 32 | neeq2d | ⊢ ( 𝑦 = 𝑋 → ( ( 𝐹 ‘ 𝑌 ) ≠ ( 𝐹 ‘ 𝑦 ) ↔ ( 𝐹 ‘ 𝑌 ) ≠ ( 𝐹 ‘ 𝑋 ) ) ) |
| 34 | 33 | ralsng | ⊢ ( 𝑋 ∈ 𝑈 → ( ∀ 𝑦 ∈ { 𝑋 } ( 𝐹 ‘ 𝑌 ) ≠ ( 𝐹 ‘ 𝑦 ) ↔ ( 𝐹 ‘ 𝑌 ) ≠ ( 𝐹 ‘ 𝑋 ) ) ) |
| 35 | 34 | adantr | ⊢ ( ( 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉 ) → ( ∀ 𝑦 ∈ { 𝑋 } ( 𝐹 ‘ 𝑌 ) ≠ ( 𝐹 ‘ 𝑦 ) ↔ ( 𝐹 ‘ 𝑌 ) ≠ ( 𝐹 ‘ 𝑋 ) ) ) |
| 36 | 35 | adantr | ⊢ ( ( ( 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉 ) ∧ 𝑋 ≠ 𝑌 ) → ( ∀ 𝑦 ∈ { 𝑋 } ( 𝐹 ‘ 𝑌 ) ≠ ( 𝐹 ‘ 𝑦 ) ↔ ( 𝐹 ‘ 𝑌 ) ≠ ( 𝐹 ‘ 𝑋 ) ) ) |
| 37 | 31 36 | bitrd | ⊢ ( ( ( 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉 ) ∧ 𝑋 ≠ 𝑌 ) → ( ∀ 𝑦 ∈ ( 𝐴 ∖ { 𝑌 } ) ( 𝐹 ‘ 𝑌 ) ≠ ( 𝐹 ‘ 𝑦 ) ↔ ( 𝐹 ‘ 𝑌 ) ≠ ( 𝐹 ‘ 𝑋 ) ) ) |
| 38 | 26 37 | anbi12d | ⊢ ( ( ( 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉 ) ∧ 𝑋 ≠ 𝑌 ) → ( ( ∀ 𝑦 ∈ ( 𝐴 ∖ { 𝑋 } ) ( 𝐹 ‘ 𝑋 ) ≠ ( 𝐹 ‘ 𝑦 ) ∧ ∀ 𝑦 ∈ ( 𝐴 ∖ { 𝑌 } ) ( 𝐹 ‘ 𝑌 ) ≠ ( 𝐹 ‘ 𝑦 ) ) ↔ ( ( 𝐹 ‘ 𝑋 ) ≠ ( 𝐹 ‘ 𝑌 ) ∧ ( 𝐹 ‘ 𝑌 ) ≠ ( 𝐹 ‘ 𝑋 ) ) ) ) |
| 39 | necom | ⊢ ( ( 𝐹 ‘ 𝑋 ) ≠ ( 𝐹 ‘ 𝑌 ) ↔ ( 𝐹 ‘ 𝑌 ) ≠ ( 𝐹 ‘ 𝑋 ) ) | |
| 40 | 39 | biimpi | ⊢ ( ( 𝐹 ‘ 𝑋 ) ≠ ( 𝐹 ‘ 𝑌 ) → ( 𝐹 ‘ 𝑌 ) ≠ ( 𝐹 ‘ 𝑋 ) ) |
| 41 | 40 | pm4.71i | ⊢ ( ( 𝐹 ‘ 𝑋 ) ≠ ( 𝐹 ‘ 𝑌 ) ↔ ( ( 𝐹 ‘ 𝑋 ) ≠ ( 𝐹 ‘ 𝑌 ) ∧ ( 𝐹 ‘ 𝑌 ) ≠ ( 𝐹 ‘ 𝑋 ) ) ) |
| 42 | 38 41 | bitr4di | ⊢ ( ( ( 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉 ) ∧ 𝑋 ≠ 𝑌 ) → ( ( ∀ 𝑦 ∈ ( 𝐴 ∖ { 𝑋 } ) ( 𝐹 ‘ 𝑋 ) ≠ ( 𝐹 ‘ 𝑦 ) ∧ ∀ 𝑦 ∈ ( 𝐴 ∖ { 𝑌 } ) ( 𝐹 ‘ 𝑌 ) ≠ ( 𝐹 ‘ 𝑦 ) ) ↔ ( 𝐹 ‘ 𝑋 ) ≠ ( 𝐹 ‘ 𝑌 ) ) ) |
| 43 | 15 42 | bitrd | ⊢ ( ( ( 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉 ) ∧ 𝑋 ≠ 𝑌 ) → ( ∀ 𝑥 ∈ { 𝑋 , 𝑌 } ∀ 𝑦 ∈ ( 𝐴 ∖ { 𝑥 } ) ( 𝐹 ‘ 𝑥 ) ≠ ( 𝐹 ‘ 𝑦 ) ↔ ( 𝐹 ‘ 𝑋 ) ≠ ( 𝐹 ‘ 𝑌 ) ) ) |
| 44 | 3 43 | bitrid | ⊢ ( ( ( 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉 ) ∧ 𝑋 ≠ 𝑌 ) → ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ ( 𝐴 ∖ { 𝑥 } ) ( 𝐹 ‘ 𝑥 ) ≠ ( 𝐹 ‘ 𝑦 ) ↔ ( 𝐹 ‘ 𝑋 ) ≠ ( 𝐹 ‘ 𝑌 ) ) ) |
| 45 | 44 | anbi2d | ⊢ ( ( ( 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉 ) ∧ 𝑋 ≠ 𝑌 ) → ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ ( 𝐴 ∖ { 𝑥 } ) ( 𝐹 ‘ 𝑥 ) ≠ ( 𝐹 ‘ 𝑦 ) ) ↔ ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ ( 𝐹 ‘ 𝑋 ) ≠ ( 𝐹 ‘ 𝑌 ) ) ) ) |
| 46 | 2 45 | bitrid | ⊢ ( ( ( 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉 ) ∧ 𝑋 ≠ 𝑌 ) → ( 𝐹 : 𝐴 –1-1→ 𝐵 ↔ ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ ( 𝐹 ‘ 𝑋 ) ≠ ( 𝐹 ‘ 𝑌 ) ) ) ) |