This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The edge function of a simple graph is a 1-1 function onto the set of edges. (Contributed by AV, 18-Oct-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | usgrf1oedg.i | ⊢ 𝐼 = ( iEdg ‘ 𝐺 ) | |
| usgrf1oedg.e | ⊢ 𝐸 = ( Edg ‘ 𝐺 ) | ||
| Assertion | usgrf1oedg | ⊢ ( 𝐺 ∈ USGraph → 𝐼 : dom 𝐼 –1-1-onto→ 𝐸 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | usgrf1oedg.i | ⊢ 𝐼 = ( iEdg ‘ 𝐺 ) | |
| 2 | usgrf1oedg.e | ⊢ 𝐸 = ( Edg ‘ 𝐺 ) | |
| 3 | eqid | ⊢ ( Vtx ‘ 𝐺 ) = ( Vtx ‘ 𝐺 ) | |
| 4 | 3 1 | usgrf | ⊢ ( 𝐺 ∈ USGraph → 𝐼 : dom 𝐼 –1-1→ { 𝑥 ∈ ( 𝒫 ( Vtx ‘ 𝐺 ) ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) = 2 } ) |
| 5 | f1f1orn | ⊢ ( 𝐼 : dom 𝐼 –1-1→ { 𝑥 ∈ ( 𝒫 ( Vtx ‘ 𝐺 ) ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) = 2 } → 𝐼 : dom 𝐼 –1-1-onto→ ran 𝐼 ) | |
| 6 | 4 5 | syl | ⊢ ( 𝐺 ∈ USGraph → 𝐼 : dom 𝐼 –1-1-onto→ ran 𝐼 ) |
| 7 | edgval | ⊢ ( Edg ‘ 𝐺 ) = ran ( iEdg ‘ 𝐺 ) | |
| 8 | 7 | a1i | ⊢ ( 𝐺 ∈ USGraph → ( Edg ‘ 𝐺 ) = ran ( iEdg ‘ 𝐺 ) ) |
| 9 | 1 | eqcomi | ⊢ ( iEdg ‘ 𝐺 ) = 𝐼 |
| 10 | 9 | rneqi | ⊢ ran ( iEdg ‘ 𝐺 ) = ran 𝐼 |
| 11 | 8 10 | eqtrdi | ⊢ ( 𝐺 ∈ USGraph → ( Edg ‘ 𝐺 ) = ran 𝐼 ) |
| 12 | 2 11 | eqtrid | ⊢ ( 𝐺 ∈ USGraph → 𝐸 = ran 𝐼 ) |
| 13 | 12 | f1oeq3d | ⊢ ( 𝐺 ∈ USGraph → ( 𝐼 : dom 𝐼 –1-1-onto→ 𝐸 ↔ 𝐼 : dom 𝐼 –1-1-onto→ ran 𝐼 ) ) |
| 14 | 6 13 | mpbird | ⊢ ( 𝐺 ∈ USGraph → 𝐼 : dom 𝐼 –1-1-onto→ 𝐸 ) |