This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A simple path is a path (in an undirected graph). (Contributed by Alexander van der Vekens, 21-Oct-2017) (Revised by AV, 9-Jan-2021) (Proof shortened by AV, 30-Oct-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | spthispth | ⊢ ( 𝐹 ( SPaths ‘ 𝐺 ) 𝑃 → 𝐹 ( Paths ‘ 𝐺 ) 𝑃 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl | ⊢ ( ( 𝐹 ( Trails ‘ 𝐺 ) 𝑃 ∧ Fun ◡ 𝑃 ) → 𝐹 ( Trails ‘ 𝐺 ) 𝑃 ) | |
| 2 | funres11 | ⊢ ( Fun ◡ 𝑃 → Fun ◡ ( 𝑃 ↾ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) | |
| 3 | 2 | adantl | ⊢ ( ( 𝐹 ( Trails ‘ 𝐺 ) 𝑃 ∧ Fun ◡ 𝑃 ) → Fun ◡ ( 𝑃 ↾ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) |
| 4 | imain | ⊢ ( Fun ◡ 𝑃 → ( 𝑃 “ ( { 0 , ( ♯ ‘ 𝐹 ) } ∩ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) = ( ( 𝑃 “ { 0 , ( ♯ ‘ 𝐹 ) } ) ∩ ( 𝑃 “ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) ) | |
| 5 | 1e0p1 | ⊢ 1 = ( 0 + 1 ) | |
| 6 | 5 | oveq1i | ⊢ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) = ( ( 0 + 1 ) ..^ ( ♯ ‘ 𝐹 ) ) |
| 7 | 6 | ineq2i | ⊢ ( { 0 , ( ♯ ‘ 𝐹 ) } ∩ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) = ( { 0 , ( ♯ ‘ 𝐹 ) } ∩ ( ( 0 + 1 ) ..^ ( ♯ ‘ 𝐹 ) ) ) |
| 8 | 0z | ⊢ 0 ∈ ℤ | |
| 9 | prinfzo0 | ⊢ ( 0 ∈ ℤ → ( { 0 , ( ♯ ‘ 𝐹 ) } ∩ ( ( 0 + 1 ) ..^ ( ♯ ‘ 𝐹 ) ) ) = ∅ ) | |
| 10 | 8 9 | ax-mp | ⊢ ( { 0 , ( ♯ ‘ 𝐹 ) } ∩ ( ( 0 + 1 ) ..^ ( ♯ ‘ 𝐹 ) ) ) = ∅ |
| 11 | 7 10 | eqtri | ⊢ ( { 0 , ( ♯ ‘ 𝐹 ) } ∩ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) = ∅ |
| 12 | 11 | imaeq2i | ⊢ ( 𝑃 “ ( { 0 , ( ♯ ‘ 𝐹 ) } ∩ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) = ( 𝑃 “ ∅ ) |
| 13 | ima0 | ⊢ ( 𝑃 “ ∅ ) = ∅ | |
| 14 | 12 13 | eqtri | ⊢ ( 𝑃 “ ( { 0 , ( ♯ ‘ 𝐹 ) } ∩ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) = ∅ |
| 15 | 4 14 | eqtr3di | ⊢ ( Fun ◡ 𝑃 → ( ( 𝑃 “ { 0 , ( ♯ ‘ 𝐹 ) } ) ∩ ( 𝑃 “ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) = ∅ ) |
| 16 | 15 | adantl | ⊢ ( ( 𝐹 ( Trails ‘ 𝐺 ) 𝑃 ∧ Fun ◡ 𝑃 ) → ( ( 𝑃 “ { 0 , ( ♯ ‘ 𝐹 ) } ) ∩ ( 𝑃 “ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) = ∅ ) |
| 17 | 1 3 16 | 3jca | ⊢ ( ( 𝐹 ( Trails ‘ 𝐺 ) 𝑃 ∧ Fun ◡ 𝑃 ) → ( 𝐹 ( Trails ‘ 𝐺 ) 𝑃 ∧ Fun ◡ ( 𝑃 ↾ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ∧ ( ( 𝑃 “ { 0 , ( ♯ ‘ 𝐹 ) } ) ∩ ( 𝑃 “ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) = ∅ ) ) |
| 18 | isspth | ⊢ ( 𝐹 ( SPaths ‘ 𝐺 ) 𝑃 ↔ ( 𝐹 ( Trails ‘ 𝐺 ) 𝑃 ∧ Fun ◡ 𝑃 ) ) | |
| 19 | ispth | ⊢ ( 𝐹 ( Paths ‘ 𝐺 ) 𝑃 ↔ ( 𝐹 ( Trails ‘ 𝐺 ) 𝑃 ∧ Fun ◡ ( 𝑃 ↾ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ∧ ( ( 𝑃 “ { 0 , ( ♯ ‘ 𝐹 ) } ) ∩ ( 𝑃 “ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) = ∅ ) ) | |
| 20 | 17 18 19 | 3imtr4i | ⊢ ( 𝐹 ( SPaths ‘ 𝐺 ) 𝑃 → 𝐹 ( Paths ‘ 𝐺 ) 𝑃 ) |