This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Reverse closure for the class of universal property. (Contributed by Zhi Wang, 25-Sep-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | uprcl2.x | ⊢ ( 𝜑 → 𝑋 ( 〈 𝐹 , 𝐺 〉 ( 𝐷 UP 𝐸 ) 𝑊 ) 𝑀 ) | |
| Assertion | uprcl2 | ⊢ ( 𝜑 → 𝐹 ( 𝐷 Func 𝐸 ) 𝐺 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uprcl2.x | ⊢ ( 𝜑 → 𝑋 ( 〈 𝐹 , 𝐺 〉 ( 𝐷 UP 𝐸 ) 𝑊 ) 𝑀 ) | |
| 2 | df-br | ⊢ ( 𝑋 ( 〈 𝐹 , 𝐺 〉 ( 𝐷 UP 𝐸 ) 𝑊 ) 𝑀 ↔ 〈 𝑋 , 𝑀 〉 ∈ ( 〈 𝐹 , 𝐺 〉 ( 𝐷 UP 𝐸 ) 𝑊 ) ) | |
| 3 | 2 | biimpi | ⊢ ( 𝑋 ( 〈 𝐹 , 𝐺 〉 ( 𝐷 UP 𝐸 ) 𝑊 ) 𝑀 → 〈 𝑋 , 𝑀 〉 ∈ ( 〈 𝐹 , 𝐺 〉 ( 𝐷 UP 𝐸 ) 𝑊 ) ) |
| 4 | eqid | ⊢ ( Base ‘ 𝐸 ) = ( Base ‘ 𝐸 ) | |
| 5 | 4 | uprcl | ⊢ ( 〈 𝑋 , 𝑀 〉 ∈ ( 〈 𝐹 , 𝐺 〉 ( 𝐷 UP 𝐸 ) 𝑊 ) → ( 〈 𝐹 , 𝐺 〉 ∈ ( 𝐷 Func 𝐸 ) ∧ 𝑊 ∈ ( Base ‘ 𝐸 ) ) ) |
| 6 | 5 | simpld | ⊢ ( 〈 𝑋 , 𝑀 〉 ∈ ( 〈 𝐹 , 𝐺 〉 ( 𝐷 UP 𝐸 ) 𝑊 ) → 〈 𝐹 , 𝐺 〉 ∈ ( 𝐷 Func 𝐸 ) ) |
| 7 | df-br | ⊢ ( 𝐹 ( 𝐷 Func 𝐸 ) 𝐺 ↔ 〈 𝐹 , 𝐺 〉 ∈ ( 𝐷 Func 𝐸 ) ) | |
| 8 | 7 | biimpri | ⊢ ( 〈 𝐹 , 𝐺 〉 ∈ ( 𝐷 Func 𝐸 ) → 𝐹 ( 𝐷 Func 𝐸 ) 𝐺 ) |
| 9 | 1 3 6 8 | 4syl | ⊢ ( 𝜑 → 𝐹 ( 𝐷 Func 𝐸 ) 𝐺 ) |