This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for uptpos . (Contributed by Zhi Wang, 4-Nov-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | oppcuprcl2.x | ⊢ ( 𝜑 → 𝑋 ( 〈 𝐹 , 𝐺 〉 ( 𝑂 UP 𝑃 ) 𝑊 ) 𝑀 ) | |
| uptpos.h | ⊢ ( 𝜑 → tpos 𝐺 = 𝐻 ) | ||
| Assertion | uptposlem | ⊢ ( 𝜑 → tpos 𝐻 = 𝐺 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oppcuprcl2.x | ⊢ ( 𝜑 → 𝑋 ( 〈 𝐹 , 𝐺 〉 ( 𝑂 UP 𝑃 ) 𝑊 ) 𝑀 ) | |
| 2 | uptpos.h | ⊢ ( 𝜑 → tpos 𝐺 = 𝐻 ) | |
| 3 | 2 | tposeqd | ⊢ ( 𝜑 → tpos tpos 𝐺 = tpos 𝐻 ) |
| 4 | eqid | ⊢ ( Base ‘ 𝑂 ) = ( Base ‘ 𝑂 ) | |
| 5 | 1 | uprcl2 | ⊢ ( 𝜑 → 𝐹 ( 𝑂 Func 𝑃 ) 𝐺 ) |
| 6 | 4 5 | funcfn2 | ⊢ ( 𝜑 → 𝐺 Fn ( ( Base ‘ 𝑂 ) × ( Base ‘ 𝑂 ) ) ) |
| 7 | fnrel | ⊢ ( 𝐺 Fn ( ( Base ‘ 𝑂 ) × ( Base ‘ 𝑂 ) ) → Rel 𝐺 ) | |
| 8 | 6 7 | syl | ⊢ ( 𝜑 → Rel 𝐺 ) |
| 9 | relxp | ⊢ Rel ( ( Base ‘ 𝑂 ) × ( Base ‘ 𝑂 ) ) | |
| 10 | 6 | fndmd | ⊢ ( 𝜑 → dom 𝐺 = ( ( Base ‘ 𝑂 ) × ( Base ‘ 𝑂 ) ) ) |
| 11 | 10 | releqd | ⊢ ( 𝜑 → ( Rel dom 𝐺 ↔ Rel ( ( Base ‘ 𝑂 ) × ( Base ‘ 𝑂 ) ) ) ) |
| 12 | 9 11 | mpbiri | ⊢ ( 𝜑 → Rel dom 𝐺 ) |
| 13 | tpostpos2 | ⊢ ( ( Rel 𝐺 ∧ Rel dom 𝐺 ) → tpos tpos 𝐺 = 𝐺 ) | |
| 14 | 8 12 13 | syl2anc | ⊢ ( 𝜑 → tpos tpos 𝐺 = 𝐺 ) |
| 15 | 3 14 | eqtr3d | ⊢ ( 𝜑 → tpos 𝐻 = 𝐺 ) |