This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for upeu2 . There exists a unique morphism from Y to Z that commutes if F : X --> Y is an isomorphism. (Contributed by Zhi Wang, 20-Sep-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | upeu2lem.b | ⊢ 𝐵 = ( Base ‘ 𝐶 ) | |
| upeu2lem.h | ⊢ 𝐻 = ( Hom ‘ 𝐶 ) | ||
| upeu2lem.o | ⊢ · = ( comp ‘ 𝐶 ) | ||
| upeu2lem.i | ⊢ 𝐼 = ( Iso ‘ 𝐶 ) | ||
| upeu2lem.c | ⊢ ( 𝜑 → 𝐶 ∈ Cat ) | ||
| upeu2lem.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | ||
| upeu2lem.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | ||
| upeu2lem.z | ⊢ ( 𝜑 → 𝑍 ∈ 𝐵 ) | ||
| upeu2lem.f | ⊢ ( 𝜑 → 𝐹 ∈ ( 𝑋 𝐼 𝑌 ) ) | ||
| upeu2lem.g | ⊢ ( 𝜑 → 𝐺 ∈ ( 𝑋 𝐻 𝑍 ) ) | ||
| Assertion | upeu2lem | ⊢ ( 𝜑 → ∃! 𝑘 ∈ ( 𝑌 𝐻 𝑍 ) 𝐺 = ( 𝑘 ( 〈 𝑋 , 𝑌 〉 · 𝑍 ) 𝐹 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | upeu2lem.b | ⊢ 𝐵 = ( Base ‘ 𝐶 ) | |
| 2 | upeu2lem.h | ⊢ 𝐻 = ( Hom ‘ 𝐶 ) | |
| 3 | upeu2lem.o | ⊢ · = ( comp ‘ 𝐶 ) | |
| 4 | upeu2lem.i | ⊢ 𝐼 = ( Iso ‘ 𝐶 ) | |
| 5 | upeu2lem.c | ⊢ ( 𝜑 → 𝐶 ∈ Cat ) | |
| 6 | upeu2lem.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | |
| 7 | upeu2lem.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | |
| 8 | upeu2lem.z | ⊢ ( 𝜑 → 𝑍 ∈ 𝐵 ) | |
| 9 | upeu2lem.f | ⊢ ( 𝜑 → 𝐹 ∈ ( 𝑋 𝐼 𝑌 ) ) | |
| 10 | upeu2lem.g | ⊢ ( 𝜑 → 𝐺 ∈ ( 𝑋 𝐻 𝑍 ) ) | |
| 11 | 1 2 4 5 7 6 | isohom | ⊢ ( 𝜑 → ( 𝑌 𝐼 𝑋 ) ⊆ ( 𝑌 𝐻 𝑋 ) ) |
| 12 | eqid | ⊢ ( Inv ‘ 𝐶 ) = ( Inv ‘ 𝐶 ) | |
| 13 | 1 12 5 6 7 4 | invf | ⊢ ( 𝜑 → ( 𝑋 ( Inv ‘ 𝐶 ) 𝑌 ) : ( 𝑋 𝐼 𝑌 ) ⟶ ( 𝑌 𝐼 𝑋 ) ) |
| 14 | 13 9 | ffvelcdmd | ⊢ ( 𝜑 → ( ( 𝑋 ( Inv ‘ 𝐶 ) 𝑌 ) ‘ 𝐹 ) ∈ ( 𝑌 𝐼 𝑋 ) ) |
| 15 | 11 14 | sseldd | ⊢ ( 𝜑 → ( ( 𝑋 ( Inv ‘ 𝐶 ) 𝑌 ) ‘ 𝐹 ) ∈ ( 𝑌 𝐻 𝑋 ) ) |
| 16 | 1 2 3 5 7 6 8 15 10 | catcocl | ⊢ ( 𝜑 → ( 𝐺 ( 〈 𝑌 , 𝑋 〉 · 𝑍 ) ( ( 𝑋 ( Inv ‘ 𝐶 ) 𝑌 ) ‘ 𝐹 ) ) ∈ ( 𝑌 𝐻 𝑍 ) ) |
| 17 | oveq1 | ⊢ ( 𝐺 = ( 𝑘 ( 〈 𝑋 , 𝑌 〉 · 𝑍 ) 𝐹 ) → ( 𝐺 ( 〈 𝑌 , 𝑋 〉 · 𝑍 ) ( ( 𝑋 ( Inv ‘ 𝐶 ) 𝑌 ) ‘ 𝐹 ) ) = ( ( 𝑘 ( 〈 𝑋 , 𝑌 〉 · 𝑍 ) 𝐹 ) ( 〈 𝑌 , 𝑋 〉 · 𝑍 ) ( ( 𝑋 ( Inv ‘ 𝐶 ) 𝑌 ) ‘ 𝐹 ) ) ) | |
| 18 | 17 | adantl | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑌 𝐻 𝑍 ) ) ∧ 𝐺 = ( 𝑘 ( 〈 𝑋 , 𝑌 〉 · 𝑍 ) 𝐹 ) ) → ( 𝐺 ( 〈 𝑌 , 𝑋 〉 · 𝑍 ) ( ( 𝑋 ( Inv ‘ 𝐶 ) 𝑌 ) ‘ 𝐹 ) ) = ( ( 𝑘 ( 〈 𝑋 , 𝑌 〉 · 𝑍 ) 𝐹 ) ( 〈 𝑌 , 𝑋 〉 · 𝑍 ) ( ( 𝑋 ( Inv ‘ 𝐶 ) 𝑌 ) ‘ 𝐹 ) ) ) |
| 19 | 5 | adantr | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑌 𝐻 𝑍 ) ) → 𝐶 ∈ Cat ) |
| 20 | 7 | adantr | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑌 𝐻 𝑍 ) ) → 𝑌 ∈ 𝐵 ) |
| 21 | 6 | adantr | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑌 𝐻 𝑍 ) ) → 𝑋 ∈ 𝐵 ) |
| 22 | 15 | adantr | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑌 𝐻 𝑍 ) ) → ( ( 𝑋 ( Inv ‘ 𝐶 ) 𝑌 ) ‘ 𝐹 ) ∈ ( 𝑌 𝐻 𝑋 ) ) |
| 23 | 1 2 4 5 6 7 | isohom | ⊢ ( 𝜑 → ( 𝑋 𝐼 𝑌 ) ⊆ ( 𝑋 𝐻 𝑌 ) ) |
| 24 | 23 9 | sseldd | ⊢ ( 𝜑 → 𝐹 ∈ ( 𝑋 𝐻 𝑌 ) ) |
| 25 | 24 | adantr | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑌 𝐻 𝑍 ) ) → 𝐹 ∈ ( 𝑋 𝐻 𝑌 ) ) |
| 26 | 8 | adantr | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑌 𝐻 𝑍 ) ) → 𝑍 ∈ 𝐵 ) |
| 27 | simpr | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑌 𝐻 𝑍 ) ) → 𝑘 ∈ ( 𝑌 𝐻 𝑍 ) ) | |
| 28 | 1 2 3 19 20 21 20 22 25 26 27 | catass | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑌 𝐻 𝑍 ) ) → ( ( 𝑘 ( 〈 𝑋 , 𝑌 〉 · 𝑍 ) 𝐹 ) ( 〈 𝑌 , 𝑋 〉 · 𝑍 ) ( ( 𝑋 ( Inv ‘ 𝐶 ) 𝑌 ) ‘ 𝐹 ) ) = ( 𝑘 ( 〈 𝑌 , 𝑌 〉 · 𝑍 ) ( 𝐹 ( 〈 𝑌 , 𝑋 〉 · 𝑌 ) ( ( 𝑋 ( Inv ‘ 𝐶 ) 𝑌 ) ‘ 𝐹 ) ) ) ) |
| 29 | 9 | adantr | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑌 𝐻 𝑍 ) ) → 𝐹 ∈ ( 𝑋 𝐼 𝑌 ) ) |
| 30 | eqid | ⊢ ( Id ‘ 𝐶 ) = ( Id ‘ 𝐶 ) | |
| 31 | 3 | oveqi | ⊢ ( 〈 𝑌 , 𝑋 〉 · 𝑌 ) = ( 〈 𝑌 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑌 ) |
| 32 | 1 4 12 19 21 20 29 30 31 | isocoinvid | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑌 𝐻 𝑍 ) ) → ( 𝐹 ( 〈 𝑌 , 𝑋 〉 · 𝑌 ) ( ( 𝑋 ( Inv ‘ 𝐶 ) 𝑌 ) ‘ 𝐹 ) ) = ( ( Id ‘ 𝐶 ) ‘ 𝑌 ) ) |
| 33 | 32 | oveq2d | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑌 𝐻 𝑍 ) ) → ( 𝑘 ( 〈 𝑌 , 𝑌 〉 · 𝑍 ) ( 𝐹 ( 〈 𝑌 , 𝑋 〉 · 𝑌 ) ( ( 𝑋 ( Inv ‘ 𝐶 ) 𝑌 ) ‘ 𝐹 ) ) ) = ( 𝑘 ( 〈 𝑌 , 𝑌 〉 · 𝑍 ) ( ( Id ‘ 𝐶 ) ‘ 𝑌 ) ) ) |
| 34 | 1 2 30 19 20 3 26 27 | catrid | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑌 𝐻 𝑍 ) ) → ( 𝑘 ( 〈 𝑌 , 𝑌 〉 · 𝑍 ) ( ( Id ‘ 𝐶 ) ‘ 𝑌 ) ) = 𝑘 ) |
| 35 | 28 33 34 | 3eqtrd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑌 𝐻 𝑍 ) ) → ( ( 𝑘 ( 〈 𝑋 , 𝑌 〉 · 𝑍 ) 𝐹 ) ( 〈 𝑌 , 𝑋 〉 · 𝑍 ) ( ( 𝑋 ( Inv ‘ 𝐶 ) 𝑌 ) ‘ 𝐹 ) ) = 𝑘 ) |
| 36 | 35 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑌 𝐻 𝑍 ) ) ∧ 𝐺 = ( 𝑘 ( 〈 𝑋 , 𝑌 〉 · 𝑍 ) 𝐹 ) ) → ( ( 𝑘 ( 〈 𝑋 , 𝑌 〉 · 𝑍 ) 𝐹 ) ( 〈 𝑌 , 𝑋 〉 · 𝑍 ) ( ( 𝑋 ( Inv ‘ 𝐶 ) 𝑌 ) ‘ 𝐹 ) ) = 𝑘 ) |
| 37 | 18 36 | eqtr2d | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑌 𝐻 𝑍 ) ) ∧ 𝐺 = ( 𝑘 ( 〈 𝑋 , 𝑌 〉 · 𝑍 ) 𝐹 ) ) → 𝑘 = ( 𝐺 ( 〈 𝑌 , 𝑋 〉 · 𝑍 ) ( ( 𝑋 ( Inv ‘ 𝐶 ) 𝑌 ) ‘ 𝐹 ) ) ) |
| 38 | oveq1 | ⊢ ( 𝑘 = ( 𝐺 ( 〈 𝑌 , 𝑋 〉 · 𝑍 ) ( ( 𝑋 ( Inv ‘ 𝐶 ) 𝑌 ) ‘ 𝐹 ) ) → ( 𝑘 ( 〈 𝑋 , 𝑌 〉 · 𝑍 ) 𝐹 ) = ( ( 𝐺 ( 〈 𝑌 , 𝑋 〉 · 𝑍 ) ( ( 𝑋 ( Inv ‘ 𝐶 ) 𝑌 ) ‘ 𝐹 ) ) ( 〈 𝑋 , 𝑌 〉 · 𝑍 ) 𝐹 ) ) | |
| 39 | 38 | adantl | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑌 𝐻 𝑍 ) ) ∧ 𝑘 = ( 𝐺 ( 〈 𝑌 , 𝑋 〉 · 𝑍 ) ( ( 𝑋 ( Inv ‘ 𝐶 ) 𝑌 ) ‘ 𝐹 ) ) ) → ( 𝑘 ( 〈 𝑋 , 𝑌 〉 · 𝑍 ) 𝐹 ) = ( ( 𝐺 ( 〈 𝑌 , 𝑋 〉 · 𝑍 ) ( ( 𝑋 ( Inv ‘ 𝐶 ) 𝑌 ) ‘ 𝐹 ) ) ( 〈 𝑋 , 𝑌 〉 · 𝑍 ) 𝐹 ) ) |
| 40 | 10 | adantr | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑌 𝐻 𝑍 ) ) → 𝐺 ∈ ( 𝑋 𝐻 𝑍 ) ) |
| 41 | 1 2 3 19 21 20 21 25 22 26 40 | catass | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑌 𝐻 𝑍 ) ) → ( ( 𝐺 ( 〈 𝑌 , 𝑋 〉 · 𝑍 ) ( ( 𝑋 ( Inv ‘ 𝐶 ) 𝑌 ) ‘ 𝐹 ) ) ( 〈 𝑋 , 𝑌 〉 · 𝑍 ) 𝐹 ) = ( 𝐺 ( 〈 𝑋 , 𝑋 〉 · 𝑍 ) ( ( ( 𝑋 ( Inv ‘ 𝐶 ) 𝑌 ) ‘ 𝐹 ) ( 〈 𝑋 , 𝑌 〉 · 𝑋 ) 𝐹 ) ) ) |
| 42 | 3 | oveqi | ⊢ ( 〈 𝑋 , 𝑌 〉 · 𝑋 ) = ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐶 ) 𝑋 ) |
| 43 | 1 4 12 19 21 20 29 30 42 | invcoisoid | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑌 𝐻 𝑍 ) ) → ( ( ( 𝑋 ( Inv ‘ 𝐶 ) 𝑌 ) ‘ 𝐹 ) ( 〈 𝑋 , 𝑌 〉 · 𝑋 ) 𝐹 ) = ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) ) |
| 44 | 43 | oveq2d | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑌 𝐻 𝑍 ) ) → ( 𝐺 ( 〈 𝑋 , 𝑋 〉 · 𝑍 ) ( ( ( 𝑋 ( Inv ‘ 𝐶 ) 𝑌 ) ‘ 𝐹 ) ( 〈 𝑋 , 𝑌 〉 · 𝑋 ) 𝐹 ) ) = ( 𝐺 ( 〈 𝑋 , 𝑋 〉 · 𝑍 ) ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) ) ) |
| 45 | 1 2 30 19 21 3 26 40 | catrid | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑌 𝐻 𝑍 ) ) → ( 𝐺 ( 〈 𝑋 , 𝑋 〉 · 𝑍 ) ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) ) = 𝐺 ) |
| 46 | 41 44 45 | 3eqtrd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑌 𝐻 𝑍 ) ) → ( ( 𝐺 ( 〈 𝑌 , 𝑋 〉 · 𝑍 ) ( ( 𝑋 ( Inv ‘ 𝐶 ) 𝑌 ) ‘ 𝐹 ) ) ( 〈 𝑋 , 𝑌 〉 · 𝑍 ) 𝐹 ) = 𝐺 ) |
| 47 | 46 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑌 𝐻 𝑍 ) ) ∧ 𝑘 = ( 𝐺 ( 〈 𝑌 , 𝑋 〉 · 𝑍 ) ( ( 𝑋 ( Inv ‘ 𝐶 ) 𝑌 ) ‘ 𝐹 ) ) ) → ( ( 𝐺 ( 〈 𝑌 , 𝑋 〉 · 𝑍 ) ( ( 𝑋 ( Inv ‘ 𝐶 ) 𝑌 ) ‘ 𝐹 ) ) ( 〈 𝑋 , 𝑌 〉 · 𝑍 ) 𝐹 ) = 𝐺 ) |
| 48 | 39 47 | eqtr2d | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑌 𝐻 𝑍 ) ) ∧ 𝑘 = ( 𝐺 ( 〈 𝑌 , 𝑋 〉 · 𝑍 ) ( ( 𝑋 ( Inv ‘ 𝐶 ) 𝑌 ) ‘ 𝐹 ) ) ) → 𝐺 = ( 𝑘 ( 〈 𝑋 , 𝑌 〉 · 𝑍 ) 𝐹 ) ) |
| 49 | 37 48 | impbida | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑌 𝐻 𝑍 ) ) → ( 𝐺 = ( 𝑘 ( 〈 𝑋 , 𝑌 〉 · 𝑍 ) 𝐹 ) ↔ 𝑘 = ( 𝐺 ( 〈 𝑌 , 𝑋 〉 · 𝑍 ) ( ( 𝑋 ( Inv ‘ 𝐶 ) 𝑌 ) ‘ 𝐹 ) ) ) ) |
| 50 | 49 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑘 ∈ ( 𝑌 𝐻 𝑍 ) ( 𝐺 = ( 𝑘 ( 〈 𝑋 , 𝑌 〉 · 𝑍 ) 𝐹 ) ↔ 𝑘 = ( 𝐺 ( 〈 𝑌 , 𝑋 〉 · 𝑍 ) ( ( 𝑋 ( Inv ‘ 𝐶 ) 𝑌 ) ‘ 𝐹 ) ) ) ) |
| 51 | reu6i | ⊢ ( ( ( 𝐺 ( 〈 𝑌 , 𝑋 〉 · 𝑍 ) ( ( 𝑋 ( Inv ‘ 𝐶 ) 𝑌 ) ‘ 𝐹 ) ) ∈ ( 𝑌 𝐻 𝑍 ) ∧ ∀ 𝑘 ∈ ( 𝑌 𝐻 𝑍 ) ( 𝐺 = ( 𝑘 ( 〈 𝑋 , 𝑌 〉 · 𝑍 ) 𝐹 ) ↔ 𝑘 = ( 𝐺 ( 〈 𝑌 , 𝑋 〉 · 𝑍 ) ( ( 𝑋 ( Inv ‘ 𝐶 ) 𝑌 ) ‘ 𝐹 ) ) ) ) → ∃! 𝑘 ∈ ( 𝑌 𝐻 𝑍 ) 𝐺 = ( 𝑘 ( 〈 𝑋 , 𝑌 〉 · 𝑍 ) 𝐹 ) ) | |
| 52 | 16 50 51 | syl2anc | ⊢ ( 𝜑 → ∃! 𝑘 ∈ ( 𝑌 𝐻 𝑍 ) 𝐺 = ( 𝑘 ( 〈 𝑋 , 𝑌 〉 · 𝑍 ) 𝐹 ) ) |